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Nonminimal coupling of the inflaton field to the Ricci curvature of spacetime is gener-
ally unavoidable, and the paradigm of inflation should be generalized by including the
corresponding termξRφ2/2 in the Lagrangian of the inflationary theory. This paper
reports on the status of the programme of generalizing inflation. First, the problem of
finding the correct value (or set of values) of the coupling constantξ is analyzed; the
result has important consequences for the success or failure of inflationary scenarios.
Then, the slow-roll approximation to generalized inflation is studied. Both the unper-
turbed inflating universe models and scalar/tensor perturbations are discussed, and open
problems are pointed out.

1. INTRODUCTION

Cosmic inflation is a period of accelerated expansion of the universe during
its early phase: provided that inflation proceeds for a sufficiently long time (such
that the cosmic expansion in the inflationary period is about 60 e-folds) and that
physical criteria for a successful description of the universe (Kolb and Turner, 1994;
Linde, 1990) are met, inflation solves the classic problems of the standard big bang
cosmology (the horizon, flatness, and monopole problem, Kolb and Turner, 1994;
Linde, 1990). In addition, inflation provides, as a bonus, a mechanism (quantum
fluctuations of the inflaton field) to generate density perturbations, the seeds of
structures observed in the universe today (galaxies, clusters, and superclusters).

Nowadays, this last aspect is regarded as the main motivation to pursue re-
search on inflation (e.g., Liddle, 1999). There are many scenarios of inflation, but
no “standard model” is universally accepted: inflation has been called a “paradigm
in search of a model.” In the vast majority of inflationary scenarios, the cosmic ac-
celeration is driven by one (or more) scalar field(s): although there are exceptions
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(e.g., the scenario of Starobinsky, 1980a,b), a scalar field is sometimes added even
to these scenarios in order to “help” inflation (Maeda, 1989).

The inflaton fieldφ satisfies the Klein–Gordon equation: for reasons explained
ahead, when generalizing the latter from Minkowski space to a curved space, one
needs to introduce, in general, a nonminimal coupling term between the scalarφ

and the Ricci curvature of spacetimeR as follows:

¤φ − dV

dφ
− ξRφ = 0, (1.1)

where¤ = gµν∇µ∇ν is d’Alembert’s operator on a curved space,V(φ) is the
scalar field self-interaction potential, andξ is a dimensionless coupling constant.
The classic works on inflation neglected the−ξRφ term in Eq. (1.1) (which is
equivalent to assume thatξ = 0); hereafter, this theory is calledordinary inflation,
as opposed togeneralized inflation, which corresponds toξ 6= 0. As explained
in the next section, almost always the introduction of a nonminimal (i.e.,ξ 6= 0
in Eq. (1.1)) coupling is not an option; rather, it is unavoidable. This fact is not
well known to cosmologists and has profound consequences for the physics of the
inflaton. Then, given the unavoidability of nonminimal coupling (hereafter NMC),
one needs to rethink inflation by appropriately including terms corresponding to
ξ 6= 0 in the relevant equations. This was already done forspecificinflationary
scenarios by a number of authors (Barrosoet al., 1992; Bassett and Liberati, 1998;
Fakir et al., 1992; Fakir and Habib, 1993; Fakir and Unruh, 1990a,b; Futamase
et al., 1989; Futamase and Tanaka, 1999; Garcia-Bellido and Linde, 1995; Hwang
and Noh, 1998; Komatsu and Futamase, 1998, 1999; Laycock and Liddle, 1994;
Leeet al., 1999; Madsen, 1988; Makino and Sasaki, 1991; Salopeket al., 1989;
Starobinsky, 1981); however, the approach adopted was largely one in which the
coupling constantξ is regarded as an extra parameter of inflation that can be used
at one’s will in order to cure preexisting problems of the inflationary scenario.
To make an example, chaotic inflation with quartic self-interactionV(φ) = λφ4

andξ = 0 is fine-tuned: the amplitude of anisotropies of the cosmic microwave
background requiresλ ≤ 10−12, a figure that makes the scenario uninteresting
from the point of view of particle physics which originally motivated it. The fine-
tuning is significantly reduced if one introduces nonminimal coupling withξ < 0
and|ξ | ' 104 (Fakir and Unruh, 1990a; Makino and Sasaki, 1991); the price to
pay for reducing the fine-tuning ofλ is the fine-tuning ofξ . We disagree with the
philosophy of this approach because the coupling constantξ has, in general, a well-
defined value in nature4 and is not an extra free parameter of the theory. In Section 3
we review the known prescriptions for the value of the coupling constantξ and
make clear that, not onlyξ 6= 0 in the general case, but also that fine-tuningξ is not

4 Exceptions, discussed later, are the cases in whichξ is a running coupling in GUT theories, or when
first loop corrections are taken into account.
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a possibility. We then proceed to analyze the consequences of including NMC into
the equations of inflation. The study necessarily proceeds at two levels: first, one
has to consider theunperturbedbackground universe; and then one continues with
the study of scalar and tensorperturbationsof the fixed inflationary background
universe. The amplitudes and spectra of perturbations are very important since
they leave a detectable imprint in the cosmic microwave background.

Temperature anisotropies in the sky, likely the fingerprints of inflation, have
been discovered by the COBE satellite (Smootet al., 1992) and their experimental
study is one of the primary goals of current cosmology. Major improvements will
come with the MAP5 and PLANCK6 satellites to be launched, respectively, in the
years 2001 and 2007.

In this paper we approach the task of reformulating generalized inflation (i.e.,
including theξ 6= 0 terms in the picture) from ageneralpoint of view, that is,
we do not adopt a specific inflationary scenario. The results for the unperturbed
universe are presented in Sections 3 and 4.

A special role is played by the slow-roll approximation: apart from two excep-
tions (power-law inflation and the string-inspired, toy model of Easther (1996)—
see also Martin and Schwarz (2001)), one cannot exactly solve the equations of
inflation (both unperturbed and perturbed), and one needs to resort to the slow-
roll approximation. The latter has been discussed in great detail for minimal (i.e.,
ξ = 0) coupling (see Lidseyet al., 1997 for a recent review), and is much needed
also in the case of nonminimal, coupling, for which the equations are even more
complicated. Slow-roll generalized inflation is discussed in Section 4. The study
of scalar and tensor perturbations with nonminimal coupling is the subject of
Section 5, where previous results are reviewed and completed to obtain explicit
formulas for the observables of inflation. de Sitter solutions play the role of at-
tractors of inflationary solutions in the phase space for generalized, as well as
ordinary, inflation; it is this fact that ultimately gives meaning to the slow-roll
approximation. Section 6 contains a list of open problems and the conclusions.

2. NONMINIMAL COUPLING OF THE SCALAR FIELD

The action of gravity plus a nonminimally coupled scalar field as matter is

S=
∫

d4x
√−g

[
R

2κ
− 1

2
∇cφ∇cφ − V(φ)− ξ

2
Rφ2

]
, (2.1)

whereκ ≡ 8πG, G is Newton’s constant and, apart from minor differences, we
adopt the notations and conventions7 of Wald (1984).

5 MAP homepage: http://www.map.gsfc.nasa.gov/
6 PLANCK homepage: http://astro.estec.esa.nl/SA-general/Projects/Planck
7 The metric signature is−+++ andG denotes Newton’s constant. The speed of light and Planck’s
constant assume the value unity andmpl = G−1/2 is the Planck mass. The components of the Ricci
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2.1. Whyξ 6= 0?

The nonminimal coupling of the scalarφ described by Eq. (1.1) was appar-
ently introduced for the first time by Chernikov and Tagirov (1968), although it
is better known from the work of Callanet al. (1970). Why should one consider
ξ 6= 0? The answer is manyfold: a nonzeroξ is generated by quantum correc-
tions even if it is absent in the classical action (Birrell and Davies, 1980a,b; Ford,
1987; Ford and Toms, 1982; Nelson and Panangaden, 1982; Parker and Toms,
1985a). If one prepares a classical theory withξ = 0, renormalization shifts it to
one withξ 6= 0. Even though the shift is small, it can have a tremendous effect on
an inflationary scenario. The classical example of this effect is related to chaotic
inflation (Futamase and Maeda, 1989): the shiftξ = 0→ ξrenormalized≈ 10−1 (a
typical value predicted by renormalization, Allen, 1993; Ishikawa, 1983) is suffi-
cient to ruin the chaotic inflationary scenario with potentialV = λφ4 (Futamase
et al., 1989; Futamase and Maeda, 1989).

Another reason to include aξ 6= 0 term in the coupled Einstein–Klein–Gordon
equations is that it is required by renormalization of the theory (this was the moti-
vation for the introduction of NMC by Callanet al.(1970). It has also been argued
(see ahead) that a NMC term is expected at high curvatures (Ford, 1987; Ford
and Toms, 1982), and that classicalization of the universe in quantum cosmology
requiresξ 6= 0 (Okamura, 1998). A pragmatic point of view would be that, since
NMC may be crucial for the success or failure of inflation (Abbott, 1981; Faraoni,
1996, 1998; Futamaseet al., 1989; Futamase and Maeda, 1989), one better take it
into account and decidea posterioriwhether its presence is negligible or not.

In relativity, it turns out that any value ofξ different from 1/6 (“confor-
mal coupling,” the value that makes the Klein–Gordon equation (1.1), and the
physics ofφ, conformally invariant ifV = 0 or V = λφ4, Wald, 1984) spoils the
Einstein equivalence principle and is therefore not admissible (Faraoni and Sonego,
1994; Grib and Poberii, 1995; Grib and Rodrigues, 1995; Sonego and Faraoni,
1993).

Whichever point of view one adopts, with motivations arising in a range of
areas as wide as quantum field theory in curved spaces, wormholes (Coule, 1992;
Coule and Maeda, 1990; Halliwell and Laflamme, 1989), black holes (Hiscock,
1990; van der Bij and Radu, 2000), boson stars (Jetzer, 1992; van der Bij and
Gleiser, 1987), specific inflationary scenarios, a pure relativist’s approach, or
merely a pragmatic one, the message is that in general it is wise not to ignore
the NMC term by settingξ = 0, as done in ordinary inflation. Although the inclu-
sion of NMC makes the analysis considerably more difficult, and it was unknown
in the early, pioneering days of inflationary theory, the times are mature for the
inclusion of NMC in the theory.

tensor are given in terms of the Christoffel symbols0δαβ by Rµρ = 0νµρ ,ν − 0ννρ ,µ + 0αµρ0ναν −
0ανρ0

ν
αµ, and¤ ≡ gab∇a∇b.
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2.2. What is the Value ofξ?

It is plausible that the value of the coupling constantξ be fixed by the physics
of the problem, and not be left to the choice of the theoretician as a free parameter.
A particle physicist’s answer to the question “what is the value ofξ?” differs
according to the theory of the scalar field employed.

If φ is a Goldstone boson in a theory with a spontaneously broken global sym-
metry, thenξ = 0 (Voloshin and Dolgov, 1982). If the scalar fieldφ is associated
to a composite particle, the value ofξ is fixed by the dynamics of its components.
In particular, in the largeN approximation to the Nambu–Jona–Lasinio model, the
valueξ = 1/6 was found (Hill and Salopek, 1992). In the O(N)-symmetric model
with quartic self interaction, in which the constituents of theφ-particle are them-
selves bosons,ξ depends on the coupling constantsξi of the elementary scalars
(Reuter, 1994). In Einstein’s gravity with the potential

V(φ) = V0+ m2

2
φ2+ η

3!
φ3+ λ

4!
φ4 (2.2)

and back-reaction, the valueξ = 0 was found (Hosotani, 1985; Parker and Toms,
1985b). Higgs fields in the standard model have values ofξ in the rangeξ ≤ 0, ξ ≥
1/6 (Hosotani, 1985).

A great deal of results is available in the renormalization group approach
to quantum field theory in curved spaces. It is shown in Buchbinder (1986),
Buchbinderet al. (1986), Buchbinder and Odintsov (1983, 1985), Elizalde and
Odintsov (1994), Muta and Odintsov (1991), and Odintsov (1991) that in asymp-
totically free GUTs, depending on the gauge group employed (SU(2), SU(N),
SO(N), . . .) and on the matter content,ξ is a running coupling that converges
to 1/6 (asymptotic conformal invariance), or to a valueξ0 determined by the
initial conditions (usually this occurs for supersymmetric GUTs) or (formally),
|ξ (τ )| → +∞. The last behaviour is often characteristic of large gauge groups
(SU(10), SO(10),. . .). Hereτ is a renormalization group parameter, withτ →+∞
corresponding to strong curvature and early universe situations. In Buchbinder
et al. (1992) it was shown that also in asymptotically free GUTs with SU(5) as
the gauge group,|ξ (τ )| → +∞. Finite GUTs (another class of GUTs) behave
similarly to asymptotically free GUTs, withξ (τ ) converging to 1/6, or to an initial
valueξ0 (e.g., forN = 4 supersymmetry), or to infinity. Moreover, for finite GUTs
the convergence ofξ (τ ) to its asymptotic value asτ →+∞ is much faster than in
asymptotically free GUT models (indeed, the convergence is exponentially fast,
Buchbinder, 1989, 1992). Hence, the asymptotic value ofξ in the early universe
strongly depends on the choice of the specific GUT and of its gauge group and
matter content.

The problem of the value ofξ in this context is not an easy one, as is clear
from the example case of the simpleλφ4 theory. The latter is asymptotically free in
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the infrared limit (τ →−∞), which does not correspond to high curvature. Never-
theless, it was shown in Buchbinder (1986), Buchbinderet al.(1986), Buchbinder
and Odintsov (1983, 1985), Elizalde and Odintsov (1994), Muta and Odintsov
(1991), and Odintsov (1991) thatξ (τ )→ 1/6 asτ →−∞. In the limitτ →+∞
of strong curvatures, one cannot answer the question of the asymptotic value of
ξ (τ ) since the theory is contradictory (not asymptotically free) in this limit. Nev-
ertheless, anexactrenormalization group approach to theλφ4 theory shows that
ξ = 1/6 is indeed a stable fixed point of the exact renormalization group (Parker
and Toms, 1985b).

So far, controversies on these results only arose for a restricted class of specific
models (Bonanno, 1995; Bonanno and Zappal´a, 1997). The divergence of the
running couplingξ as the energy scale and the curvature and temperature increase
going back in time in the history of the universe, has been introduced in cosmology
(Hill and Salopek, 1992) and exploited to make the chaotic inflationary scenario
with ξ < 0 more plausible in the cases in which|ξ (τ )| → +∞ (Futamase and
Tanaka, 1999). The divergence of the couplingξ is also crucial for the success
of the so-called “geometric reheating” of the universe after inflation (Bassett and
Liberati, 1998), in which particles are created due to the strong coupling of the
inflaton to the Ricci curvatureR, instead of the usual coupling ofφ to other
fields.

First loop corrections to the classical theory makeξ likely to be a running
parameter which depends on the Ricci curvature: in Ford and Toms (1982) and
Parker and Toms (1985b) the effective coupling

ξeff = ξ + λ

16π2

(
ξ − 1

6

)
ln s, (2.3)

was found for the self-interaction potentialλφ4/4!, wheres is a parameter that
tends to zero in the renormalization group approach. In practice, this amounts to
have the effective coupling

ξeff ∝ ln(Rl2), (2.4)

wherel−1 is a renormalization mass (Ford, 1987).
To the best of our knowledge, no prescriptions for the value ofξ other than

those reviewed were proposed in the high energy physics literature. Instead, a
strong prescription comes from relativity.

In general relativity (and in all other metric theories of gravity in whichφ is
a nongravitational field8 ), the only value ofξ allowed by the Einstein equivalence
principle (Will, 1993) is the conformal coupling 1/6. However, the derivation of
this result (Faraoni and Sonego, 1994; Sonego and Faraoni, 1993) has nothing to

8 For example, the Brans–Dicke scalar field is part of the gravitational sector of the theory together
with the metric tensorgab, hence it is agravitationalscalar field.
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do with conformal invariance, conformal transformations, or conformal flatness
of the spacetime metricgab. It arises in the study of wave propagation and tails of
scalar radiation (violations of the Huygens’ principle) in curved spaces. This field
of mathematical physics is rather far from cosmology and,a priori, it is unlikely to
contribute to cosmology, but this is not the case. Before getting into details, let us
anticipate the main idea: one imposes that the structure of tails ofφ (which satisfies
the wave equation (1.1)) becomes closer and closer to that occurring in Minkowski
space as the curved manifold is progressively approximated by its tangent space.
This is the Einstein equivalence principle (Will, 1993) applied to the physics ofφ

(of course, the rest of physics too has to satisfy the Einstein equivalence principle;
the requirement thatφ does satisfy it is only a necessary condition for consistency
with general relativity).

Moreover, it turns out thatξ = 1/6 is necessary in order to avoid the physical
pathology ofmassivefieldsφ propagatingalong the light cones.

We summarize now the derivation of this result: one begins with the physical
definition of Huygens’ principle due to Hadamard (1952). Assume that a point-like
source of (scalar) radiation emits a delta-like pulse at timet = 0 in r = 0. If at
t = t1 there is radiation only on the surface of the sphere with radiusr = ct1 and
centrer = 0, then we say that Huygens’ principle is satisfied (and that there are no
tails). If instead there is radiation also at radiir < ct1 (tails), Huygens’ principle
is violated.

Mathematically, the solution for a delta-like pulse is the retarded Green func-
tion GR(x′, x) of Eq. (1.1), which satisfies

[ga′b′ (x′)∇a′∇b′ −m2− ξR(x′)]GR(x′, x) = −δ(x′, x), (2.5)

whereδ(x′, x) is the four-dimensional Dirac delta (DeWitt and Brehme, 1960)
which satisfies the boundary conditionGR(x′, x) = 0 if x′ is in the past ofx
and, for simplicity, we consider the case in which the potentialV(φ) reduces to
a mass term (the generalization to arbitrary potentials can be found in Faraoni
and Sonego (1994) and Sonego and Faraoni (1993)).GR(x′, x) has the general
structure (DeWitt and Brehme, 1960; Friedlander, 1975; Hadamard, 1952)

GR(x′, x) = 6(x′, x)δR(0(x′, x))+W(x′, x)2R(−0(x′, x)), (2.6)

where0(x′, x) is the square of the geodesic distance betweenx′ andx (a quantity
well known in quantum field theory in curved spaces, Birrell and Davies, 1980a);
one has0 = 0 if x′ andx are light-like related,0 > 0 if x′ andx are space-like
related, and0 < 0 if x′ and x are time-like related.δR is the Dirac delta with
support in the past ofx′, and2R is the Heaviside step function with support in the
past light cone. The term inδR(0) describes a contribution to the Green function
from φ waves propagating along the light cone (0 = 0), while the term2R(−0)
describes the contribution toGR from tails of φ propagatinginside the light
cone (0 < 0). The functions6(x′, x) andW(x′, x) are mere coefficients which
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(at least in principle) are determined once the spacetime metric is fixed (DeWitt
and Brehme, 1960; Friedlander, 1975).

The Einstein equivalence principle is imposed as follows on the physics of the
fieldφ: when the spacetime manifold is progressively approximated by its tangent
space (i.e., by fixing the pointx and considering a small neighborhood of pointsx′

such thatx′ → x), then the solutionGR(x′, x) for a delta-like pulse must reduce
to the corresponding one known from Minkowski spacetime, which is

G(Minkowski)
R (x′, x) = 1

4π
δR(−0)− m2

8π
2R(0). (2.7)

Calculations show that (Faraoni and Sonego, 1994; Sonego and Faraoni, 1993)

limx′→x 6(x′, x) = 1

4π
, (2.8)

limx′→x W(x′, x) = − 1

8π

[
m2+

(
ξ − 1

6

)
R(x)

]
; (2.9)

henceGR→ G(Minkowski)
R if and only if(

ξ − 1

6

)
R(x) = 0, (2.10)

and this condition is verified, in general, only ifξ = 1/6. Note that, ifξ 6= 1/6,
a physical pathology may occur: theφ-field can have an arbitrarily large mass
and still propagate along the light cone at the spacetime points where Eq. (2.10)
is satisfied; in this situation an arbitrarily massive field would have no tails. It is
even possible to construct an “ultrapathological” de Sitter spacetime in which the
value of the constant curvature and of the mass are adjusted in such a way that
a scalar field with arbitrarily large mass propagates along the light cone at every
point (Faraoni and Gunzig, 1998).

The result thatξ = 1/6 in general relativity is extended to all metric theories
of gravity in whichφ is not part of the gravitational sector (Faraoni and Sonego,
1994; Sonego and Faraoni, 1993); in fact, in these theories, the Einstein equivalence
principle holds (Will, 1993); the fact thatξ = 1/6 was confirmed in later studies
(Grib and Poberii, 1995; Grib and Rodrigues, 1995).

3. INFLATION AND ξ 6= 0: THE UNPERTURBED UNIVERSE

In this section we summarize the consequences of the inclusion of NMC in the
equations of the unperturbed Friedmann–Lemaitre–Robertson–Walker (FLRW)
universe. We assume that the metric is given by

ds2 = −dt2+ a2(t)(dx2+ dy2+ dz2) (3.1)

in comoving coordinates (t, x, y, z).
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It is clear from the previous section that one cannot arbitrarily setξ = 0 and it
was shown in several papers (Abbott, 1981; Amendolaet al., 1990; Faraoni, 1996,
1998; Futamase and Maeda, 1989) that the value ofξ determines the viability of
inflationary scenarios. The analysis of some specific inflationary scenarios was
performed in Faraoni (1996) and is not repeated here: it suffices to mention that a
scenario should be examined with regard to

(i) theoretical consistence;
(ii) fine-tuning problems.

Regarding the former, one asks oneself whether any prescription for the value
of ξ is applicable. If the answer is affirmative, one examines the consequences for
the viability of the specific scenario (does the value ofξ used correspond to the
theoretical prescription?). Aspects studied include the existence of inflationary
solutions and a sufficient amount of inflation.

Fine-tuning is an aspect perhaps less fundamental but nevertheless important;
the classic example is the already mentioned chaotic inflationary scenario with
V = λφ4 studied by Futamase and Maeda (1989); inflationary solutions turn out
to be fine-tuned forξ ≥ 10−3, in particular for the valueξ = 1/6' 0.16 predicted
by general relativity.

3.1. Necessary Conditions for Inflation

In this section we study necessary conditions for inflation, defined as ac-
celeration of the scale factor, ¨a > 0. Acceleration of the universe, the essential
qualitative feature of inflation, is also required at the present epoch of the history
of the universe in order to explain the data from high redshift Type Ia supernovae
(Perlmutteret al., 1998; Riesset al., 1998). The latter imply that a form of matter
with negative pressure (“quintessence”) is beginning to dominate the dynamics of
the universe. Scalar fields have been proposed as natural models of quintessence
(Baccigalupiet al., 2000; Chiba, 1999; Perrottaet al., 1999; Steinhardtet al.,
1999; Uzan, 1999; Zlatevet al., 1999), and therefore, the considerations of this
subsection are also relevant for scalar field models of quintessence.

In ordinary inflation driven by a scalar field the Einstein–Friedmann equations

H2 ≡
(

ȧ

a

)2

= κ

3

(
φ̇

2

2
+ V(φ)

)
, (3.2)

ä

a
= −κ

3
(φ̇

2− V), (3.3)

imply that a necessary (but not sufficient) condition for cosmic acceleration is
V ≥ 0 (note that in slow-roll inflationρ ' V(φ)À φ̇

2
/2 and in this caseV ≥ 0

is necessary to satisfy the weak energy condition, Wald, 1984).
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What is the analog of the necessary condition for inflation whenξ 6= 0?
Manipulation of the equations of inflation with NMC (Faraoni, 2000a) yields

V − 3ξ

2
φ

dV

dφ
> 0

(
ξ ≤ 1

6

)
. (3.4)

This necessary condition could not be generalized to valuesξ > 1/6, due to the
difficulty of handling the dynamical equations analytically whenξ 6= 0 (no ap-
proximation was made). Albeit limited, the semiinfinite range of values of the
coupling constantξ ≤ 1/6 covers many of the prescriptions for the value ofξ

given in the literature. In theξ → 0 limit, Eq. (3.4) reduces to the well known
necessary condition for accelerationV > 0.

The necessary condition (3.4) immediately allows one to reach certain
conclusions.

(i) Consider an even potentialV(φ) = V(−φ) which is increasing forφ > 0
(e.g., a pure mass termm2φ2/2, a quartic potential, or their combination
V(φ) = m2φ2/2+λφ4+3/κ. For 0< ξ < 1/6, one hasξφ dV/dφ > 0
and it is harder to satisfy the necessary condition (3.4) for inflation than
in the minimal coupling case. Hence one can say that, for this class of
potentials, it is harder to achieve acceleration of the universe, and hence
inflation. If insteadξ < 0, the necessary condition for cosmic acceleration
is more easily satisfied than in theξ = 0 case, but one is not entitled to
say that with NMC it is easier to achieve inflation (because a necessary,
and not a sufficient condition for acceleration is considered).

(ii) Taking to the extremes the possibility of a balance between the potential
V(φ) and the termξRφ2/2 in the action (2.1), one may wonder whether
it is possible to obtain inflation with a scalar field andV(φ) = 0 (i.e.,
a free, massless scalar with no cosmological constant, only owing to
the NMC. In particular, the case of strong coupling|ξ | À 1 considered
many times in the literature (Bassett and Liberati, 1998; Chiba, 1999;
Fakir and Unruh, 1990b; Fukuyamaet al., 1997; Hwang and Noh, 1998;
Morikawa, 1990, 1991; Salopeket al., 1989) is of interest. It is immediate
to conclude that this is not possible forξ ≤ 1/6 since by settingV = 0
the necessary condition (3.4) cannot be satisfied.

3.2. The Effective Equation of State

The effective equation of state

P = wρ (3.5)

of the cosmic fluid describing the scalar field has a coefficientw that, in general, is
time-dependent; it cannot be assigneda priori without restricting the solutions to
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special ones (a(t) = a0t2/(3(w+1))) if w 6= −1, ora = a0 eHt if w = −1 (solutions
for a nonspatially flat universe and arbitrary values ofw can be found in Faraoni
(1999). The functionw(t) depends on the particular solution of the equations of
motion.

In the case of minimal coupling and for ageneralpotentialV , the effective
equation of state of the universe is given by

P

ρ
= φ̇

2− 2V

φ̇
2+ 2V

≡ w(x), (3.6)

wherex ≡ φ̇ 2
/2V is the ratio between the kinetic and the potential energy den-

sities of the scalarφ. Under the usual assumptionV ≥ 0 (which guarantees that
the energy densityρ is nonnegative wheṅφ = 0), one has that, forx ≥ 0, the
function w(x) = (x2− 1)(x2+ 1)−1 increases monotonically from its minimum
wmin = −1 attained atx = 0 to the horizontal asymptote+1 asx→+∞. The
slow rollover regime corresponds to the region|x| ¿ 1 and tow near its minimum,
where the kinetic energy density ofφ is negligible in comparison to its potential
energy density. As the kinetic energy densityφ̇

2
/2 increases, the equation of state

progressively deviates fromP = −ρ and the pressure becomes less and less neg-
ative; the system gradually moves away from the slow rollover regime. At the
equipartition between the kinetic and the potential energy densities (x = 1), one
has the “dust” equation of stateP = 0. The pressure becomes positive asx in-
creases and, when the kinetic energy density completely dominates the potential
energy density (x À 1), one finally reaches the equation of stateP = ρ.

The limitation−1≤ w(x) ≤ 1 valid for ξ = 0 does not hold forξ 6= 0:
in the presence of NMC the ratioP/ρ is not bounded from below. An exam-
ple is given by the exact solution withP = −5ρ/3 obtained in Rocha Filho
et al. (2000) forξ = 1/6 and corresponding to integrability of the equations of
motion.

4. GENERALIZED SLOW-ROLL INFLATION

The equations or ordinary inflation are solved in the slow-roll approximation;
similarly, the equations for the density and gravitational wave perturbations gen-
erated during inflation can only be solved, in general, in the same approximation.9

Here, the basics of the slow-roll approximation to ordinary inflation are recalled,
referring the reader to the review paper (Lidseyet al., 1997) and to the references
therein for a comprehensive discussion.

9 The only exceptions are two specific scenarios: power-law inflation and the string-inspired scenario of
Easther (1996), a toy model already ruled out by the COBE observations (Easther, 1996). Otherwise
one may resort to numerical integration in a specified scenario.
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In the approximation

φ̈ ¿ Hφ̇ , (4.1)

V(φ) ≈ ρ À φ̇
2

2
, (4.2)

the equations of ordinary inflation (3.2), (3.3), and

φ̈ + 3Hφ̇ + dV

dφ
= 0, (4.3)

simplify to

H2 ' κ

3
V(φ), (4.4)

3Hφ̇ + dV

dφ
' 0. (4.5)

In this approximation, the equation of state of the cosmic fluid describing the scalar
field is close to the vacuum equation of stateP = −ρ, and the cosmic expansion
is almost a de Sitter one,

a = a0 exp[H (t)t ], (4.6)

with

H (t) = H0+ H1t + · · · , (4.7)

whereH0 is a constant and dominates the (small) termH1t and the next orders in
the expansion (4.7) ofH (t). The possibility that the kinetic energy densityφ̇

2
/2

of the inflaton be negligible in comparison with the potential energy densityV(φ)
(as expressed by Eq. (4.2)) arises ifV(φ) has a flat section over whichφ can roll
slowly (i.e., with small “speed”̇φ ). This is a necessary, but not sufficient, condition
for slow-roll inflation to occur: ifV(φ) is too steep, the inflaton will certainly roll
fast down the potential. Indeed, the slow-roll approximation is an assumptionon
the solutionsof the full equations of inflation (3.2), (3.3), and (4.3). As a matter
of fact, the potential could have a flat section andφ could still shoot across it with
large speeḋφ . Moreover, it was noted (Liddle, 1999) that the reduced equations
of slow-roll inflation (4.4) and (4.5) have degree reduced by one in comparison
with the full equations of ordinary inflation (3.2), (3.3), and (4.3). Hence, the
solution is specified by the reduced set of two initial conditions (φ(t0), a(t0)) in-
stead of the full set of four conditions (φ(t0), φ̇ (t0), a(t0), ȧ(t0)), with an apparent
loss of generality of the solutions. Then, why does the slow-roll approximation
work? How is it possible that solutions of slow-roll inflation be general solutions?
(If they correspond to a set of zero measure in the set of all initial conditions,
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they are fine-tuned and clearly unphysical.) The answer is that the de Sitter
solutions

a = a0 exp(H0t), φ = 0 (4.8)

are attractor pointsfor the orbits of the solutions in the phase space (Liddle
et al., 1994; Salopek and Bond, 1990). Therefore, the quasi-exponential expansion
(4.6) is ageneralproperty. Were inflationary (de Sitter) attractors absent, slow-
roll inflation would be an empty theory without generic solutions, a formalism
describing a speculation that doesn’t occur in the real world.

How does the attractor mechanism transfer to the case of generalized inflation?
Does the attractor property of de Sitter solutions survive when NMC is included in
the picture? Is a flat section of the potential still a necessary condition for slow-roll
inflation? Regarding the last question, it is useful to keep in mind that (as has been
known for a long time, Abbott, 1981; Faraoni, 1996; Futamase and Maeda, 1989)
the NMC termξRφ2/2 in the action (2.1) acts as an effective mass term,10 spoiling
the flatness of the potentials that are known to be inflationary forξ = 0. These
considerations will be reexamined and made quantitative in the following.

One begins the analysis by writing the equations of generalized inflation as

6[1− ξ (1− 6ξ )κφ2](Ḣ + 2H2)− κ(6ξ − 1)φ̇
2− 4κV + 6κξφV ′ = 0, (4.9)

κ

2
φ̇

2+ 6ξκHφφ̇ − 3H2(1− κξφ2)+ κV = 0, (4.10)

φ̈ + 3Hφ̇ + ξRφ + V ′ = 0. (4.11)

Eqs. (4.9)–(4.11) are derived by varying the action (2.1); Eq. (4.9) corresponds
to the trace of the Einstein equations,R= −κ(ρ − 3P); Eq. (4.10) is the
Hamiltonian constraint 3H2 = κρ, while Eq. (4.11) is the well-known Klein–
Gordon equation (1.1).

Note that, in the presence of NMC, the energy–momentum tensor of the scalar
field, and consequently its energy densityρ and pressureP can be identified in
several possible inequivalent ways, corresponding to different ways of writing the
field equations (see Faraoni, 2000a for a detailed discussion). The procedure that
we adopt is identified as a convenient one in Faraoni (2000a) because it is general
(i.e., solutions are not lost by manipulation of the field equations) and the stress–
energy tensor of the scalar field is covariantly conserved, which may not happen
for other choices ofρ andP (Faraoni, 2000a).

Explicitly, the energy density and pressure ofφ (which we assume to be the
only source of gravity during inflation) relative to a comoving observer of the

10Although the effect is like that of a mass, the interpretation of the constant curvature as a mass term
for the scalar field must not be taken literally (Faraoni and Cooperstock, 1998).
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FLRW universe are given by

ρ = φ̇
2

2
+ 3ξH2φ2+ 6ξHφφ̇ + V(φ), (4.12)

P = φ̇
2

2
− V(φ)− ξ (4Hφφ̇ + 2φ̇

2+ 2φφ̈)− ξ (2Ḣ + 3H2) φ2. (4.13)

As discussed in detail in Gunziget al.(2000, in press), only two equations of the set
(4.9)–(4.11) are independent, and the system can be reduced to a two-dimensional
phase space manifold with variables (H , φ). It is then straightforward to verify
that the solutions

(H, φ) = (H0, φ0), (4.14)

with H0 andφ0 constants, are all the fixed points of the dynamical system with
ξ 6= 0, provided that the conditions

12ξH2
0φ0+ V ′0 = 0, (4.15)

H2
0

(
1− κξφ2

0

) = κV0

3
, (4.16)

are satisfied, whereV0 ≡ V(φ0) and V ′0 ≡ dV/dφ|φ0. There are only two such
constraints since only two equations in the set (4.9)–(4.11) are independent. The
fixed points (4.14) are de Sitter solutions with constant scalar field and generalize
the solutions (H, φ) = (±√3/3, 0) well known for minimal coupling,3 > 0
being the cosmological constant (corresponding to the constant potentialV =
3/κ).

In order to assess the stability of the universes (4.14) (i.e., to decide whether
they are attractors or not), one has to perform a stability analysis with respect to
perturbationsδφ andδH of the scalar field and the Hubble parameter,11

φ(t, Ex) = φ0(t)+ δφ(t, Ex), H (t, Ex) = H0+ δH (t, Ex). (4.17)

Since the general perturbations are space- and time-dependent, one is faced with the
recurrent problem of gauge-dependence in cosmology: if the perturbation analysis
is performed in a particular gauge (of which many appear in the literature), one
can never be sure that the growing (decaying) modes are genuine perturbations
and not pure gauge modes which can be removed by coordinate transformations
(Kolb and Turner, 1994; Linde, 1990).

To solve the problem, one needs to perform a gauge-independent analysis:
we adopt the covariant and gauge-invariant formalism of Bardeen (1980), in the
modified formulation of Elliset al. (1989, 1990), Ellis and Bruni (1989), Hwang

11In the analysis of the phase space, attention is usually restricted only to time-dependent perturbations
(e.g., Halliwell, 1987; Mulleret al., 1990); however, these perturbations are too special to draw
definite conclusions.
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and Vishniac (1990), and Mukhanovet al. (1992). We first present and discuss
the results (Faraoni, 2000b), postponing their derivation to the final part of this
section. Forexpandingde Sitter spaces (4.14) withH0 > 0, there isstability (and
therefore (4.14) is an attractor point) if

V ′′0 ≥
V ′0
φ0

1− 3ξκφ2
0

1− ξκφ2
0

(φ0 6= 0), (4.18)

V ′′0 + 4ξκV0 ≥ 0 (φ0 = 0). (4.19)

By contrast, thecontractingfixed points (4.14) withH0 < 0 are always unstable,
like in the case of minimal coupling.

Stability depends not only on the form of the scalar field potential, which
is expected, but also on the value ofξ . It is only in particular situations that the
ξ -dependence disappears and stability holds irrespective of the value ofξ . This
happens, for example

(i) if V(φ) has a minimum (V ′0 = 0 andV ′′0 > 0) atφ0;
(ii) if V = 3/κ + λφn (including the case of a simple mass termm2φ2/2)

with 3, λ ≥ 0.

This space is stable forn ≥ 1+ f (x), where

x ≡ κξφ2
0, f (x) = 1− 3x

1− x
< 1. (4.20)

The stability conditions (4.18) and (4.19) are deduced by assuming that 0< x < 1;
if x > 1 a negative effective gravitational couplingGeff ≡ G(1− κξφ2

0)−1 arises
(Faraoni, 2000a; Futamase and Maeda, 1989). Furthermore, the slow-roll param-
eter ε3 defined in the next subsection diverges if the unperturbed solutionφ(t)
crosses one of the critical values

±φ1 ≡ ± 1√
κξ

(4.21)

(which are defined forξ > 0), while the slow-roll parameterε4 diverges ifφ(t)
crosses one of the other critical values

±φ2 ≡ ± 1√
κξ (1− 6ξ )

(4.22)

(which exist for 0< ξ < 1/6).
Under the usual assumption thatV be nonnegative, the Hamiltonian constraint

(4.10) forces|φ| to be smaller thanφ2 (Amendolaet al., 1990; Futamase and Maeda,
1989); we further assume that|φ| < φ1. If instead|φ| > φ1, the direction of the
inequality (4.18) is reversed.

The caseφ = ±φ1 not considered so far corresponds to a class of solutions
with constant Ricci curvature containing a de Sitter representative (Gunziget al.,
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2000; Gunziget al., in press). However, the latter is clearly fine-tuned and unstable
with respect to perturbations1φ.

For ξ = 0, Eq. (4.16) yieldsV ′0 = 0 for the fixed point, whereas the stability
condition (4.18) givesV ′′0 > 0; this happens, for example, whenV(φ) has a mini-
mum3/κ in φ0, which intuitively corresponds to stability. A solution starting at
any value ofφ is attracted toward the minimum; ifφ identically coincides withφ0

and there is no kinetic energy (φ̇ = 0), Eqs. (4.12) and (4.13) yield the energy den-
sity ρ = 3ξH2

0φ
2
0 + V0 = −P and the vacuum equation of state (corresponding

to de Sitter solutions) holds.
If insteadV ′′0 < 0 and the potential has a maximumV0 = 3/κ inφ0, a solution

starting nearφ0 will run away from it.
Whenξ 6= 0 the interpretation of the stability conditions (4.18) and (4.19)

is complicated by the balance betweenV(φ) and ξRφ2/2 in the action (2.1).
Eqs. (4.18) and (4.19) make precise the previous qualitative considerations on this
balance in Abbott (1981), Fakiret al. (1992), Faraoni (1996), and Futamase and
Maeda (1989).

As a conclusion,slow-roll inflation only makes sense forξ 6= 0when the con-
ditions (4.18)or (4.19)are satisfied. In this case, the expanding de Sitter spaces
(4.14) satisfying Eqs. (4.15) and (4.16) are attractor points in the phase space. One
must be cautious and check that Eq. (4.18) or (4.19) are satisfied before applying
the slow-roll formalism presented in the next section. The importance of the in-
flationary attractors is made clear once again by the example of thecontracting
spaces (4.14), for which the slow-roll approximation isexact(in the sense that the
slow-roll parametersεi defined in the next section vanish exactly). However, this
bears no relationship with the actual inflationary solutions because the contracting
spaces (4.14) are not attractors.

4.1. Derivation of the Stability Conditions

The derivation of Eqs. (4.18) and (4.19) proceeds as follows: the metric
perturbations are identified by the quantitiesA, B, HL , andHT in the expression
of the spacetime metric

ds2 = a2(t){−(1+ 2AY) dt2− 2BYi dt dxi

+ [δi j (1+ 2HL )+ 2HT Yi j ] dxi dxj }, (4.23)

where theY are scalar harmonics satisfying

∇2Y =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
Y = −k2Y, (4.24)
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Yi andYi j are related to the derivatives of theY by

Yi = 1

k2
∂i Y, (4.25)

Yi j = 1

k2
∂i ∂ j Y + 1

3
δi j Y, (4.26)

respectively (Bardeen, 1980), andk is the eigenvalue defined by Eq. (4.24). We
shall use Bardeen’s gauge-invariant potentials

8H = HL + ȧ

k

(
B− a

k
Ḣ T

)
, (4.27)

8A = A+ ȧ

k

(
B− a

k
Ḣ T

)
+ a

k

[
Ḃ− 1

k
(aḢ T )

]
, (4.28)

and the Ellis–Bruni–Hwang (Elliset al., 1989, 1990; Ellis and Bruni, 1989)
variables

1φ(t, Ex) = δφ + a

k
φ̇
(

B− a

k
Ḣ T

)
,

(4.29)
1R(t, Ex) = δR+ a

k
Ṙ
(

B− a

k
Ḣ T

)
.

The evolution equations for the gauge-invariant variables8H, A and1φ were
derived in Hwang (1990a):

8̇H +
(

ξκφφ̇

1− κξφ2
− H

)
8A − κ

1− κξφ2

×
{
ξφ1φ̇ +

[
ξφ

(
φ̇

φ
− H

)
− φ̇

2

]
1φ

}
= 0, (4.30)

(
k

a

)2

8H + 1

1− κξφ2

(
3ξ2κφ2

1− κξφ2
+ 1

2

)
κφ̇

2
8A

− 1

1− κξφ2

{(
3ξ2κφ2

1− κξφ2
+ 1

2

)
κφ̇1φ̇

+
[(

k

a

)2

ξφ − φ̈
(

3ξ2κφ2

1− κξφ2
+ 1

2

)]
κ1φ

}
= 0, (4.31)

8A +8H − 2ξκφ1φ

1− κξφ2
= 0, (4.32)
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8̈H + H8̇H +
(

H − ξκφφ̇

1− κξφ2

)
(28̇H − 8̇A)− κV

1− κξφ2
8A

+ κ

1− κξφ2

{
−ξφ1φ̈ +

[
φ̇

2
− 2ξ (φ̇ + Hφ)

]
1φ̇

+
[
ξφ

(
κpH − φ̈

φ
− 2Hφ̇

φ

)
− V ′

2κ

]
κ1φ

}
= 0, (4.33)

1φ̈ + 3H1φ̇ +
(

k2

a2
+ ξR+ V ′′

)
1φ + φ̇(38̇H − 8̇A)

+ 2(V ′ + ξRφ)8A + ξφ1R= 0, (4.34)

where

pH = 1

1− κξφ2

[
φ̇

2

2
− V − 2ξφ

(
φ̈ + 3Hφ̇ + φ̇

2

φ

)]
. (4.35)

An overdot denotes differentiation with respect to the comoving time of the un-
perturbed background, and the subscript zero denotes unperturbed quantities. The
formulation of Hwang (1990a) has been adapted to the case of a FLRW universe
with flat spatial sections; the constantκ = 8πG has been restored. Only first order
calculations in the perturbations are presented here.

Considerable simplifications occur in Eqs. (4.30)–(4.35) for the case of a de
Sitter space with constant scalar field (4.14) as the background universe; to first
order, one obtains

8H = 8A = ξκφ0

1− κξφ2
0

1φ, (4.36)

1φ̈ + 3H01φ̇ +
[

k2

a2
+ V ′′0 +

ξR0
(
1+ κξφ2

0

)+ 2V ′0κξφ0

1− κξφ2
0

]
1φ + ξφ01R= 0,

(4.37)

while Eq. (4.33) reduces to the constraint

− V0ξφ0

1− κξφ2
0

= V ′0 − pHξφ0 (4.38)

which, using Eq. (4.35), is written as

V ′0
V0
= − 4κξφ0

1− κξφ2
0

; (4.39)
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Eq. (4.39) can also be obtained by division of Eq. (4.15) by Eq. (4.16). Using the
fact thatR= 6(Ḣ + 2H2) and Eq. (4.15) one obtains

1φ̈ + 3H01φ̇ +
(

V ′′0 + 12ξH2
0 +

k2

a2

)
1φ + ξφ01R= 0. (4.40)

For a de Sitter background (4.14) the gauge-invariant variables1φ and1R coin-
cide, respectively, with the scalar field and curvature perturbationsδφ andδR, to
first order,

1φ = δφ, 1R= δR= 6(δḢ + 4H0δH ), (4.41)

and therefore12

1R= δR= −6ξκφ0
[
V ′′0 + 4(1+ 3ξ )H2

0

]
1− ξ (1− 6ξ )κφ2

0

1φ. (4.42)

One can then substitute Eq. (4.42) into Eq. (4.40) for1φ and use Eq. (4.15) to
obtain

1φ̈ + 3H01φ̇ +
(

k2

a2
+ α

)
1φ = 0, (4.43)

where

α = V ′′0 φ0
(
1− κξφ2

0

)− V ′0
(
1− 3κξφ2

0

)
φ0
[
1− ξ (1− 6ξ )κφ2

0

] (4.44)

anda = a0 exp(H0t). Let us consider the expanding (H0 > 0) de Sitter spaces
(4.14): at late timest →+∞one can neglect the (k/a)2 ∝ e−2H0t term in Eq. (4.43)
and look for solutions of the form

1φ(t, Ex) = 1

(2π )3/2

∫
d3El1φl (t) eiEl ·Ex, 1φl (t) = εl eβl t . (4.45)

Note that the Fourier expansion (4.45) is well defined because the universe has flat
spatial sections. The constantsβl must satisfy the algebraic equation

β2
l + 3H0βl + α = 0, (4.46)

with roots

β
(±)
l = 3H0

2

(
−1±

√
1− 4α

9H2
0

)
. (4.47)

While Re(β (−)
l ) < 0, the sign ofRe(β(+)

l ) depends onα: Re(β(+)
l ) > 0 if α < 0

and Re(β (+)
l ) ≤ 0 if α ≥ 0. Hence one hasstability for α ≥ 0 which, forφ0 6= 0

translates into the advertised result (4.18). If insteadα < 0, the gauge-invariant

12This expression agrees with the one following Eq. (38) of Hwang (1990a).
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perturbations1φ and1R∝ 1φ (cf. Eq. (4.42)) grow without bound and there is
instability.

Let us discuss now theφ0 = 0 case; Eqs. (4.30)–(4.34) yield

8H = 8A = 0, (4.48)

1φ̈ + 3H01φ̇ +
(

k2

a2
+ α1

)
1φ = 0, (4.49)

where1R= 0 andα1 = V ′′0 + 4ξκV0; hence, forφ0 = 0, there isstability if
Eq. (4.19) is satisfied and instability otherwise.

Finally, consider thecontracting(H0 < 0) fixed points (4.14); in this case it
is convenient to use conformal timeη (defined bydt = a dη) and the auxiliary
variableu ≡ a1φ. Eq. (4.43) becomes

d2u

dη2
+ [k2−U (η)] u = 0, (4.50)

where

U (η) =
(

4− α1

H2
0

)
1

η2
+ 2

H0η3
, (4.51)

and we used the relation

η = − 1

aH0
(4.52)

vaild in the background (4.14) (see Appendix B). Formally, Eq. (4.50) is a one-
dimensional Schr¨odinger equation for a quantum particle of unit mass in the
potentialU (η); its asymptotic solutions at largeη (corresponding tot →+∞
for a contracting de Sitter background) are free wavesu ' e±ikη, and1φ ∝ H0η

diverges. The solutions (4.14) withH0 < 0 areunstable, as in theξ = 0 case.

4.2. Slow-Roll Parameters

The Hubble slow-roll approximation known for ordinary inflation (Lidsey
et al., 1997 and references therein) is characterized by two slow-roll parameters
εH = −Ḣ/H2 andηH = −φ̈/(H φ̇) which stay small during slow-roll inflation.
WhenεH andηH increase, the kinetic energy of the inflation increases and, when
εH andηH become of order unity, the slow-roll approximation breaks down and
inflation ends.

Slow-roll parameters have been identified also for generalized inflation
(Hwang, 1990a; Hwang and Noh, 1996; Kaiser, 1995a,b); the novelty is that there
are four such parameters as opposed to the two of ordinary inflation. From the
point of view of Section 3, this fact may provide a rationale of why it is harder to
achieve slow-roll inflation with nonminimal rather than minimal coupling, for a
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given potentialV(φ) one has to satisfy four slow-roll necessary conditions instead
of two. The slow-roll parameters are the dimensionless quantities

ε1 = Ḣ

H2
= −εH , (4.53)

ε2 = φ̈

H φ̇
= −ηH , (4.54)

ε3 = − ξκφφ̇

H [1− (φ/φ1)2]
, (4.55)

ε4 = − ξ (1− 6ξ )κφφ̇

H [1− (φ/φ2)2]
. (4.56)

ε3 and ε4 vanish in the limitξ → 0 of ordinary inflation;ε4 also vanishes for
conformal coupling (ξ = 1/6). One has|εi | ¿ 1 for every solution attracted by the
expanding de Sitter spaces (4.14) (when the latter are attractor points) at sufficiently
large times. Moreover,εi = 0 exactly for de Sitter solutions.

5. INFLATION AND ξ 6= 0: PERTURBATIONS

The quantum fluctuations of the inflaton field which unavoidably take place
during inflation generate density (scalar) perturbations that act as seeds for the
formation of the structures observed in the universe today, from galaxies to super-
clusters (Kolb and Turner, 1994; Linde, 1990). Similarly, quantum fluctuationsδgab

of the metric tensor are generated during inflation, corresponding to gravitational
waves (Kolb and Turner, 1994; Linde, 1990). Both scalar and tensor perturbations
leave an imprint on the cosmic microwave background by generating temperature
fluctuations. The latter have been detected by COBE (Smootet al., 1992) and
other experiments, and are going to be studied with unprecedented accuracy by
the MAP13 and PLANCK14 satellites to be launched in the very near future.

In order to confront itself with the present and future observations, the theory
must predict observables such as the amplitudes and spectra of perturbations. For
ordinary inflation, these have been computed.15 In a remarkable series of papers,
Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) have performed a similar
calculation for generalized gravity theories described by the action

S=
∫

d4x
√−g

[
1

2
f (φ, R)− ω(φ)

2
∇cφ∇cφ − V(φ)

]
. (5.1)

13See footnote 5.
14See footnote 6.
15The calculation took a long time to be completed, starting with the early efforts of the early 80s (see

Lidseyet al. (1997) for a recent review and Guth (1997) for a historical perspective).
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The case of a nonminimally coupled scalar field is recovered by setting

f (φ, R) = R

κ
− ξRφ2, ω = 1. (5.2)

Hwang’s treatment is covariant and gauge-invariant and builds upon the formalism
developed by Bardeen (1980), Elliset al. (1989, 1990), Ellis and Bruni (1989),
and Hwang and Vishniac (1990), and considers a FLRW universe with arbitrary
curvature index. Motivated by inflation, we restrict ourselves to the spatially flat
case. The idea of Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) is to
reduce the field equations of the theory to formal Einstein equations

Gab = κT (eff )
ab , (5.3)

whereT (eff )
ab is an effective stress–energy tensor incorporating terms that would

normally appear in the left hand side of the field equations. The treatment proceeds
by using the gauge-invariant study of perturbations in Einstein gravity and ordinary
inflation (Lidseyet al., 1997; Mukhanovet al., 1992).

In the following, we review and complete the calculation, adapting it to the
case of the action (2.1) and (5.2); we believe that this review is useful for future
reference, since a consistent discussion of the slow-roll approximation was not
given before for generalized inflation. Instead of using Eq. (4.23), it is convenient
to rewrite the metric perturbations in a different form.

5.1. Scalar Perturbations

The metric is written as

ds2 = −(1+ 2α) dt2− χ,i dt dxi + a2(t)δi j (1+ 2ϕ) dxi dxj , (5.4)

while the scalar field is given by Eq. (4.17). One introduces the additional gauge-
invariant variable

δφϕ = δφ − φ̇

H
ϕ ≡ − φ̇

H
ϕδφ. (5.5)

The second order action for the perturbations (analogous to the one for ordinary
inflation, Lidseyet al., 1997) is Hwang (1997b, 1998a)

Spert=
∫

dt d3ExLpert= 1

2

∫
dt d3Ex a3Z

{
δφ̇

2
ϕ −

1

a2
δφ,i

ϕ δφϕ,i

+ 1

a3Z

H

φ̇

[
a3Z

(
φ̇

H

)· ]·
δφ2

ϕ

}
, (5.6)

where

Z(t) = H2[1− κξ (1− 6ξ )φ2](1− κξφ2)

[H (1− κξφ2)− ξκφφ̇]2
(5.7)
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(cf. Eq. (6) of Hwang (1997b, 1998a) and use Eq. (5.2)). The action (5.6) yields
the evolution equation for the perturbationsδφϕ

δφ̈ϕ +
(a3Z).

a3Z
δφ̇ϕ −

{∇2

a2
+ 1

a3Z

H

φ̇

[
a3Z

(
φ̇

H

)· ]·}
δφϕ = 0. (5.8)

By using the auxiliary variables16

z(t) = aφ̇

H

√
Z, (5.9)

v(t, Ex) = z
H

φ̇
δφϕ = a

√
Zδφϕ , (5.10)

Eq. (5.8) is reduced to

vηη −
(
∇2+ zηη

z

)
v = 0, (5.11)

whereη denotes conformal time.
Quantization is achieved by assuming that the background is classical while

the perturbations have quantum nature. A Heisenberg picture is used in which
quantum operators change in time while the state vectors remain constant (the
vacuum state of the system is identified with the adiabatic vacuum (Birrell and
Davies, 1980a), and one wants the vacuum state to remain unchanged in time).
The fluctuationsδφ(t, Ex) of the scalar field are associated to a quantum operator
δφ̂(t, Ex); similarly ϕ→ ϕ̂, and the gauge-invariant variable (5.5) is associated to
the quantum operator

δφ̂ϕ = δφ̂ −
φ̇

H
ϕ̂ (5.12)

(the hats denote quantum operators). The unperturbed quantities are regarded as
classical.

Since the three-dimensional space is flat, it is meaningful to perform a Fourier
decomposition of the operatorδφ̂ϕ ,

δφ̂ϕ =
1

(2π )3/2

∫
d3Ek [âkδφϕk(t) ei Ek·Ex + â†kδφ

∗
ϕk(t) e−i Ek·Ex], (5.13)

where the annihilation and creation operatorsâk andâ†k satisfy the canonical com-
mutation relations

[âk, âk′ ] = [â†k , â†k′ ] = 0, (5.14)

[âk, â†k′ ] = δ(3)(Ek− Ek′), (5.15)

16The variablez of Eq. (5.9) agrees with thez-variable of Mukhanovet al. (1992) and with thez of
Lidseyet al.(1997) multiplied by the factor

√
Z (note thatZ = 1 corresponds to ordinary inflation).
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and the mode functionsδφϕk(t) are complex Fourier coefficients satisfying the
classical equations obtained from Eq. (5.2)

δφ̈ϕk +
(a3Z).

a3Z
δφ̇ϕk +

{
k2

a2
− 1

a3Z

H

φ̇

[
a3Z

(
φ̇

H

)· ]}
δφϕk = 0. (5.16)

Similarly,

v(t, Ex) = 1

(2π )3/2

∫
d3Ek [vk(t) ei Ek·Ex + v∗k(t) e−i Ek·Ex], (5.17)

v̂ = zH

φ̇
δφ̂ϕ = a

√
Zδφ̂ϕ , (5.18)

and thevk(t) satisfy the equation

(vk)ηη +
(
k2− zηη

z

)
vk = 0. (5.19)

The momentum conjugated toδφϕ is

δπφ(t, Ex) = ∂Lpert

∂(δφ̇ϕ)
= a3Zδφ̇ϕ(t, Ex), (5.20)

and the associated quantum operator isδπ̂ϕ .
δφ̂ϕ andδπ̂ϕ satisfy the equal time commutation relations

[δφ̂ϕ(t, Ex), δφ̂ϕ(t, Ex′)] = [δπ̂ϕ(t, Ex), δπ̂ϕ(t, Ex′)] = 0, (5.21)

[δφ̂ϕ(t, Ex), δπ̂ϕ(t, Ex′)] = i

a3Z
δ(3)(Ex − Ex′). (5.22)

δφϕk(t) satisfy the Wronskian condition

δφϕkδφ̇
∗
ϕk − δφ∗ϕkδφ̇ϕk =

i

a3Z
. (5.23)

In Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) it isassumedthat

zηη
z
= n

η2
, (5.24)

wheren is a constant; we will comment later on the validity of this assumption.
Under the assumption (5.24), Eq. (5.19) for the Fourier modesvk reduces to

(vk)ηη +
[
k2− (ν2− 1/4)

η2

]
vk = 0, (5.25)

where

ν =
(

n+ 1

4

)1/2

. (5.26)
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By making the substitutions

s= kη, vk =
√

s J(s), (5.27)

Eq. (5.25) is reduced to the Bessel equation

d2J

ds2
+ 1

s

d J

ds
+
(

1− ν
2

s2

)
J = 0; (5.28)

therefore the solutionsvk(η) can be expressed as

vk(η) =
√

kηJν(kη), (5.29)

whereJν(s) are Bessel functions of orderν. Eq. (5.10) yields the solutions for the
Fourier coefficientsδφϕk

δφϕk(η) = φ̇

zH
vk(η) = 1

a
√

Z
vk(η). (5.30)

Thevk(η) which solve the Bessel equation (5.25) are expressed in terms of Hankel
functionsH (1,2)

ν , leading to (see Appendix A)

vk(η) =
√
π |η|
2

[
c1(Ek)H (1)

ν (k|η|)+ c2(Ek)H (2)
ν (k|η|)] (5.31)

and, by using Eq. (5.30), to

δφϕk(η) =
√
π |η|

2a
√

Z

[
c1(Ek)H (1)

ν (k|η|)+ c2(Ek)H (2)
ν (k|η|)]. (5.32)

The normalization is chosen in such a way that the relation

|c2(Ek)|2− |c1(Ek)|2 = 1 (5.33)

holds, in order to preserve the equal time commutation relation (5.23). Furthermore,
the coefficients are completely fixed by requiring that, in the limit of small scales,
the vacuum corresponds to positive frequency solutions; in fact the field theory
in Minkowski space must be recovered in this limit.17 The small scale (large
wavenumber) limit corresponds to

zηη
z
¿ k2, (5.34)

and Eq. (5.19) reduces to

(vk)ηη − k2vk = 0 (5.35)

17In other words, one is applying again the Einstein equivalence principle (Will, 1993), this time to
the physics of quantum fluctuations of the fieldφ.
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in this limit, with solutionsvk ∝ e±ikη. Eq. (5.30) yields

δφϕk = 1

a
√

Z
√

2k

[
c1(Ek) eik|η| + c2(Ek) e−ik|η|] (5.36)

which can also be obtained by expansion of the solutions (5.32) fork|η| À 1.
Obviously, the positive frequency solution at small scales is obtained by setting

c1(Ek) = 0, c2(Ek) = 1 (5.37)

so that

δφ(η, Ex) = 1

(2π )3/2

∫
d3Ex [c2(Ek)ei (Ek·Ex−kη) + c∗2(Ek)ei (−Ek·Ex+k|η|)]. (5.38)

Thepower spectrumof a quantity f (t, Ex) is defined as

P(k, t) ≡ k3

2π2

∫
d3r 〈 f (Ex + Er , t) f (Ex, t)〉Ex e−i Ek·Er = k3

2π2
| fk(t)|2, (5.39)

where〈 〉Ex denotes an average over the spatial coordinatesEx and fk(t) are the
coefficients of the Fourier expansion

f (t, Ex) = 1

(2π )3/2

∫
d3Ek [ fk(t) ei Ek·Ex + f ∗k (t) e−i Ek·Ex]. (5.40)

The power spectrum of the gauge-invariant operatorδφ̂ϕ is

Pδφ̂ϕ (k, t) = k3

2π2

∫
d3r 〈0|δφ̂ϕk(Ex + Er , t)δφ̂ϕk(Ex, t)|0〉Ex e−i Ek·Er , (5.41)

where〈0|Â|0〉 denotes the expectation value of the operatorÂ on the vacuum state.
One is interested in computing the power spectrum for large-scale perturbations,
that is, perturbations that cross outside the horizon during inflation, subsequently
remain “frozen” while outside the horizon, and only after the end of inflation,
during the radiation- or the matter-dominated era reenter the horizon to seed the
formation of structures. In the large scale limit the solution of Eq. (5.2) is

δφϕ(t, Ex) = − φ̇
H

[
C(Ex)− D(Ex)

∫ t

dt′
1

a3Z

H2

φ̇

]
, (5.42)

whereC(Ex) and D(Ex) are, respectively, the coefficients of a growing component
and of a decaying component that we neglect in the following. Accordingly, the
solutionδφϕk(η) in the large scale limitk|η| ¿ 1 is

δφϕk(η) = i
√|η|0(ν)

2a
√
πZ

(
k|η|

2

)−ν
[c2(η)− c1(η)] (5.43)
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for ν 6= 0, where0 denotes the gamma function. The power spectrum (5.41)
therefore is given by

P1/2
δφ̂ϕ

(k, η) = 0(ν)

π3/2a|η|√Z

(
k|η|

2

)3/2−ν
|c2(Ek)− c1(Ek)| (5.44)

for ν 6= 0, while one obtains (Hwang, 1990b, 1996, 1997a; Hwang and Noh, 1996)

P1/2
δφ̂ϕ

(k, η) = 2
√|η|

a
√

Z

(
k

2π

)3/2

ln(k|η|)|c2(Ek)− c1(Ek)| (5.45)

for ν = 0. Now, Eq. (5.42) yields (neglecting the decaying component),

C(Ex) = −H

φ̇
δφϕ(t, Ex) (5.46)

and therefore, using Eq. (5.39),

P1/2
C (k, t) =

∣∣∣∣H

φ̇

∣∣∣∣P1/2
δφϕ

(k, t). (5.47)

By combining Eqs. (4.56) and (5.46) one obtains

ϕδφ = −H

φ̇
δφϕ = C. (5.48)

The relation between temperature fluctuations of the cosmic microwave back-
ground and the variableC(Ex) is given in Hwang (1996) as

δT

T
= C

5
(5.49)

and therefore the spectrum of temperature fluctuations is

P1/2
δT/T (k, t) = 1

5
P1/2

C (k, t) (5.50)

and Eq. (5.47) yields

P1/2
δT/T (k, t) = 1

5

∣∣∣∣H

φ̇

∣∣∣∣P1/2
δφϕ

(k, t) (5.51)

with P1/2
δφϕ

given by Eqs. (5.44) and (5.45).
Thespectral indexof scalar perturbations is defined as

ns ≡ 1+ d lnPδϕ̂δφ
d ln k

, (5.52)

and Eq. (5.50) immediately yields

ns = 1+ d lnPC

d ln k
. (5.53)
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By using Eqs. (5.47) and (5.44) one obtains

ns = 4− 2ν (ν 6= 0); (5.54)

in the following we do not need the expression forν = 0. To proceed we need
extra input, which is connected to the validity of the assumption (5.24), which we
now discuss. Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) proved that
Eq. (5.24) is satisfied for pole-like inflationa(t) ∝ (t − t0)−q(q > 0), an expansion
law appearing in pre-big bang cosmology related to low-energy string theory.18

However, it turns out (a point not discussed in these works) thatEq. (5.24) is
satisfied in slow-roll inflation, to first order. This is interesting for us because we
know, from Section 4, that for suitable values ofξ there is a de Sitter attractor
(4.14) for nonminimal coupling, and therefore that it makes sense to consider the
slow-roll approximation.

Most models of ordinary inflation are set and solved in the context of the
slow-roll approximation. In generalized inflation as well, the fact that slow-roll
conditions satisfy Eq. (5.24) allows one to solve Eq. (5.19) for the perturbations.

Let us have a deeper look at Eq. (5.24) and at the value ofn for the slow-
roll approximation. The quantityzηη/z in Eq. (5.19) was computed exactly in
Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) in terms of the slow-
roll coefficients (4.53)–(4.56). Upon assuming that theεi be small and that their
derivatives ˙εi can be neglected (i = 1, . . . , 4), a situation mimicking the usual one
(Lidseyet al., 1997), one obtains to lowest order

zηη
z
= a2H2(2− 2ε1+ 3ε2− 3ε3+ 3ε4). (5.55)

The standard relation

η ' − 1

aH

1

1+ ε1
, (5.56)

yields Eq. (5.24) with

n = 2+ 3(−2ε1+ ε2− ε3+ ε4) (5.57)

and

ν = 3

2
− 2ε1+ ε2− ε3+ ε4. (5.58)

Eqs. (5.54) and (5.58) yield the spectral index of scalar perturbations for general-
ized slow-roll inflation,

ns = 1+ 2(2ε1− ε2+ ε3− ε4), (5.59)

18Hwang (1998a,b) is devoted, respectively, to the calculation of scalar and tensor perturbations in
pre-big bang cosmology.
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where the right hand side is computed at the time when the perturbations cross
outside the horizon during inflation. The deviations ofns from unity (i.e., from an
exactly scale-invariant Harrison–Zeldovich spectrum) are small during generalized
slow-rolling. Forξ = 0 one recovers the well-known formula for the spectral index
of ordinary inflation (Lidseyet al., 1997)ns = 1− 4εH + 2ηH .

5.2. Gravitational Wave Perturbations

Tensor perturbations are generated as quantum fluctuations of the metric ten-
sorgab in nonminimally coupled inflation, and were calculated in Hwang (1998a)
with a procedure similar to the one used for scalar perturbations. We briefly review
also this calculation.

It is convenient to introduce tensor perturbations as the trace-free and trans-
verse quantitiesci j in the metric

ds2 = −dt2+ a2(t)(δi j + 2ci j ) dxi dxj , (5.60)

with

ci
i = 0, ci j

, j = 0. (5.61)

The power spectrum is

Pci j (k, t) = k3

2π2

∫
d3Er 〈ci j (Ex + Er , t)ci j (Ex, t)〉Ex e−i Ek·Er (5.62)

and the spectral index of tensor perturbations is

nT =
d lnPci j

d ln k
. (5.63)

One obtains

P1/2
ci j

(k, η) = 8πG H√
2π

1√
1− ξk2φ2

0(ν)

0(3/2)

(
k|η|

2

)3/2−νg

×
√

1

2

∑
l

|cl1(Ek)− cl2(Ek)|2, (5.64)

where the summation
∑

l is intended over the two polarization states× and+ of
gravitational waves. In the slow-roll approximation one has

zηη
z
= m

η2
, (5.65)

wherem is the linear combination of the slow-roll parameters

m= 2− 3(ε1− ε3) (5.66)
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andνg = (m+ 1/4)1/2, as usual. Hence,νg ' 3/2− ε1+ ε3 and, to first order,

nT = 2(ε1− ε3). (5.67)

Eq. (5.67) reduces to the well known spectral index of tensor perturbations (Lidsey
et al., 1997) of ordinary inflation whenξ → 0. Note thatnT is very small for slow-
roll inflation, like in slow-roll ordinary inflation.

This completes the review of the calculation of spectral indices in Hwang
(1990b, 1996, 1997a) and Hwang and Noh (1996); the reader is invited to consult
the relevant papers.19 We just reported on the published work and completed
the calculation corresponding to the slow-roll regime. Slow-roll inflation is not
explicitly mentioned in Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996),
probably because the attractor role of de Sitter solutions was not established at that
time. The knowledge that slow-roll inflation does indeed make sense forξ 6= 0
allows us to claim that Hwang’s (Hwang, 1990b, 1996, 1997a; Hwang and Noh,
1996) calculation applies to it, and to use Eqs. (5.59) and (5.67) for the spectral
indices to test generalized inflation with observations of the cosmic microwave
background.

6. OPEN PROBLEMS

The program of rethinking inflationary theory by including the (generally
unavoidable) NMC of the scalar field, a crucial ingredient too often forgotten, is
not exhausted by the results presented in the previous sections. In this section, we
outline open problems that constitute avenues for future research.

It may be useful to remark that, in addition to inflation, NMC changes the
description and the results of the dynamical systems approach to cosmology (e.g.,
Gunziget al., 2000, in press), quantum cosmology (Barvinsky, 1999; Barvinsky
et al., 1977; da Silva and Williams, 2000; Fakir, 1990; Kamenshchiket al., 1995;
Okamura, 1998), classical and quantum wormholes (Coule, 1992; Coule and
Maeda, 1990; Halliwell and Laflamme, 1989), and constitutes a line of approach
to the cosmological constant problem (Dolgov, 1983; Ford, 1987; Suen and Will,
1988).

6.1. Doppler Peaks

We did not present Doppler peaks for generalized inflation: the acoustic os-
cillations well known for minimal coupling (Liddle and Lyth, 1993) are indeed
modified by NMC. Although a plot of the Doppler peaks requires the specification

19A synthesis is given in Kaiser (1995b) using different variables.
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of a particular scenario of generalized inflation (the potentialV(φ), the value of
the coupling constantξ , details about the end of inflation and reheating, etc.), pre-
liminary work was done in Baccigalupiet al.(2000) and Perrottaet al.(1999). The
acoustic peaks and the spectrum turnover are displaced, and the effects of NMC
in this model are (Baccigalupiet al., 2000; Perrottaet al., 1999)

(i) an enhancement of the large scale, low multipolesl region of the Doppler
peaks, due to an enhancement of the integrated Sachs–Wolfe (or Rees–
Sciama) effect;

(ii) the oscillating region of the Doppler peaks is attenuated;
(iii) the location of the peaks is shifted toward higher multipoles.

These features were derived by direct integration of the equations for the
perturbations with a modified CMBFAST code, under the assumption that the
scalar field is the source of quintessence and that it has a potential of the form
V(φ) ∝ 1/φα(α > 0) in the range of values spanned byφ today. Similar qualitative
effects appear in a model based on induced gravity, and are interpreted as the
signature of a broad class of scalar–tensor gravity theories in the cosmic microwave
background (Baccigalupiet al., 2000; Perrottaet al., 1999).

However, the nonminimally coupled scalar field driving inflation does not
necessarily have to be identified with the same scalar which possibly constitutes
quintessence today (as is instead done in quintessential inflation). Such an identi-
fication, indeed, may appear artificial. If the quintessence and the inflation field do
not coincide, the rather strong constraint (Baccigalupiet al., 2000; Chiba, 1999;
Perrottaet al., 1999)ξ2Gφ2

today < 1/500 coming from tests of gravity in the Solar
System (Will, 1993) is circumvented. More important, the features of the Doppler
peaks could then be different. A separate study is needed to explore their features
in detail.

6.2. Cosmic No-Hair Theorems

Cosmic no-hair theorems (Kolb and Turner, 1994) in the presence of NMC are
not known: one would like to know whether inflation is still a generic phenomenon
when ξ 6= 0. In other words, starting with an anisotropic Bianchi model, does
inflation occur and lead the universe toward a highly spatially homogeneous and
isotropic FLRW state, with flat spatial sections?

Preliminary results (Futamaseet al., 1989; Starobinsky, 1980a) show that the
convergence to thek = 0 FLRW universe can disappear by going fromξ = 0 to
ξ 6= 0. Our perturbation analysis of Section 4 shows that, when the deviations from
homogeneity and isotropy are small, the de Sitter solutions are still inflationary
attractors in the phase space, but an analysis for large deviations from a FLRW
space is needed.
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6.3. Reconstruction of the Inflationary Potential

The reconstruction of the inflationary potential from cosmological observa-
tions is a task that was undertaken only forξ = 0. Given the unavoidability of
NMC in the general case, one would like to have a similar formalism also for
ξ 6= 0. Nothing has been done yet on the subject.

6.4. A Connection Between Inflation and Boson Stars?

Finally, we would like to point out a possible connection between generalized
inflation and relativistic astrophysics. It appears from observations of gravitational
microlensing that there is a population of objects with massM < M¯ responsible
for the observed microlensing events. Boson stars (see Jetzer, 1992 for a review)
are candidates; nowadays, they are not regarded as unrealistic objects.

If boson stars exist at all, they are relics from the early universe since they
are formed by bosons that were around at primordial times and aggregated to form
balls very early. Hence, there is the possibility that boson stars are formed of a
condensate of inflation particles. Since the stability of boson stars depends on the
value ofξ (van der Bij and Gleiser, 1987), and such objects can only exists in
a certain range of values ofξ (Jetzer, 1992; van der Bij and Gleiser, 1987), one
can connect this range of stability to successful generalized inflation scenarios (of
which only a few have been studied in the literature). This connection could be a
link between present-day objects and the early universe; work is in progress in this
direction. For example, gravitational lensing by boson stars was studied forξ = 0
and shown to have characteristic signatures (Dabrowski and Schunck, in press);
this study could be generalized to theξ 6= 0 case.

To conclude, the inclusion of NMC in the equations of inflation seems to
be necessary in most inflationary theories, and leads to important consequences.
Inflationary solutions are changed into noninflationary ones, and fine-tuning prob-
lems appear. The much needed slow-roll approximation to inflation is meaningful
only when particular relations between the scalar field potential, its derivatives,
and the value ofξ are satisfied. In generalized slow-roll inflation, the spectra of
density and gravitational wave perturbations have been computed, and are given
in Section 5. In our opinion, the most interesting problems left open in generalized
inflation are whether cosmic no-hair theorems hold, and the reconstruction of the
inflationary potential, which will be the subjects of future research.

APPENDIX A

The Bessel functionJν(s) can be expressed as

Jν(s) = H (1)
ν (s)+ H (2)

ν (s)

2
, (A.1)
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and therefore

vk(η) =
√

kηJν(kη) =
√

kη

2

[
H (1)
ν (kη)+ H (2)

ν (kη)
]
. (A.2)

In addition, the property

Jp(z) =
∞∑

k=0

(−1)k

k!0(p+ k+ 1)

( z

2

)p+2k
(A.3)

yields

Jp(−z) = (−1)p Jp(z). (A.4)

Then,Jν(kη) = (−1)ν Jν(k|η|) if η < 0.

APPENDIX B

In de Sitter space, the dependence of the scale factor on the comoving timet

a = a0 exp(H0t) (B.1)

and the definition of conformal time

η =
∫ t dt′

a(t ′)
, (B.2)

yield the relation

η = − 1

aH0
= −e−H0t

a0H0
. (B.3)

For expandingde Sitter spaces (H0 > 0), t →+∞ corresponds toη→ 0, while
for contracting(H0 < 0) de Sitter spaces,t →+∞ corresponds toη→+∞.
During slow-roll inflation, Eq. (B.3) is corrected to

η = − 1

aH

1

1+ ε1
, (B.4)

which holds in the approximation that the derivatives of the slow-roll parameters
εi can be neglected (Hwang, 1997b, 1998a).
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