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A Crucial Ingredient of Inflation
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Nonminimal coupling of the inflaton field to the Ricci curvature of spacetime is gener-
ally unavoidable, and the paradigm of inflation should be generalized by including the
corresponding terng Rp2/2 in the Lagrangian of the inflationary theory. This paper
reports on the status of the programme of generalizing inflation. First, the problem of
finding the correct value (or set of values) of the coupling congtastanalyzed; the

result has important consequences for the success or failure of inflationary scenarios.
Then, the slow-roll approximation to generalized inflation is studied. Both the unper-
turbed inflating universe models and scalar/tensor perturbations are discussed, and open
problems are pointed out.

1. INTRODUCTION

Cosmic inflation is a period of accelerated expansion of the universe during
its early phase: provided that inflation proceeds for a sufficiently long time (such
that the cosmic expansion in the inflationary period is about 60 e-folds) and that
physical criteria for a successful description of the universe (Kolb and Turner, 1994;
Linde, 1990) are met, inflation solves the classic problems of the standard big bang
cosmology (the horizon, flatness, and monopole problem, Kolb and Turner, 1994;
Linde, 1990). In addition, inflation provides, as a bonus, a mechanism (quantum
fluctuations of the inflaton field) to generate density perturbations, the seeds of
structures observed in the universe today (galaxies, clusters, and superclusters).

Nowadays, this last aspect is regarded as the main motivation to pursue re-
search on inflation (e.g., Liddle, 1999). There are many scenarios of inflation, but
no “standard model” is universally accepted: inflation has been called a “paradigm
in search of a model.” In the vast majority of inflationary scenarios, the cosmic ac-
celeration is driven by one (or more) scalar field(s): although there are exceptions
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(e.g., the scenario of Starobinsky, 1980a,b), a scalar field is sometimes added even
to these scenarios in order to “help” inflation (Maeda, 1989).

The inflaton fieldp satisfies the Klein—-Gordon equation: for reasons explained
ahead, when generalizing the latter from Minkowski space to a curved space, one
needs to introduce, in general, a nonminimal coupling term between the gcalar
and the Ricci curvature of spacetirReas follows:

dv

O¢ P ERp =0, (1.1)
whereo = g*”V, V, is d’Alembert’s operator on a curved spad&¢) is the
scalar field self-interaction potential, afids a dimensionless coupling constant.
The classic works on inflation neglected thé Ry term in Eq. (1.1) (which is
equivalent to assume that= 0); hereafter, this theory is calleddinary inflation
as opposed tgeneralized inflationwhich corresponds t§ # 0. As explained
in the next section, almost always the introduction of a nonminimal §.€,0
in Eqg. (1.1)) coupling is not an option; rather, it is unavoidable. This fact is not
well known to cosmologists and has profound consequences for the physics of the
inflaton. Then, given the unavoidability of nonminimal coupling (hereafter NMC),
one needs to rethink inflation by appropriately including terms corresponding to
& # 0 in the relevant equations. This was already donesficificinflationary
scenarios by a number of authors (Barresal., 1992; Bassett and Liberati, 1998;
Fakir et al, 1992; Fakir and Habib, 1993; Fakir and Unruh, 1990a,b; Futamase
etal, 1989; Futamase and Tanaka, 1999; Garcia-Bellido and Linde, 1995; Hwang
and Noh, 1998; Komatsu and Futamase, 1998, 1999; Laycock and Liddle, 1994;
Leeet al, 1999; Madsen, 1988; Makino and Sasaki, 1991; Sal@peit., 1989;
Starobinsky, 1981); however, the approach adopted was largely one in which the
coupling constarg is regarded as an extra parameter of inflation that can be used
at one’s will in order to cure preexisting problems of the inflationary scenario.
To make an example, chaotic inflation with quartic self-interacidp) = r¢*
andé = 0 is fine-tuned: the amplitude of anisotropies of the cosmic microwave
background requires < 107'?, a figure that makes the scenario uninteresting
from the point of view of particle physics which originally motivated it. The fine-
tuning is significantly reduced if one introduces nonminimal coupling with O
and|&| ~ 10* (Fakir and Unruh, 1990a; Makino and Sasaki, 1991); the price to
pay for reducing the fine-tuning éfis the fine-tuning of. We disagree with the
philosophy of this approach because the coupling constaas, in general, a well-
defined value in natuteand is not an extra free parameter of the theory. In Section 3
we review the known prescriptions for the value of the coupling congtamtd
make clear that, not onky == 0 in the general case, but also that fine-turfifignot

4Exceptions, discussed later, are the cases in whista running coupling in GUT theories, or when
first loop corrections are taken into account.
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a possibility. We then proceed to analyze the consequences of including NMC into
the equations of inflation. The study necessarily proceeds at two levels: first, one
has to consider thenperturbedackground universe; and then one continues with
the study of scalar and tensperturbationsof the fixed inflationary background
universe. The amplitudes and spectra of perturbations are very important since
they leave a detectable imprint in the cosmic microwave background.

Temperature anisotropies in the sky, likely the fingerprints of inflation, have
been discovered by the COBE satellite (Smetatl., 1992) and their experimental
study is one of the primary goals of current cosmology. Major improvements will
come with the MAP and PLANCK satellites to be launched, respectively, in the
years 2001 and 2007.

In this paper we approach the task of reformulating generalized inflation (i.e.,
including the& £ 0 terms in the picture) from generalpoint of view, that is,
we do not adopt a specific inflationary scenario. The results for the unperturbed
universe are presented in Sections 3 and 4.

A special role is played by the slow-roll approximation: apart from two excep-
tions (power-law inflation and the string-inspired, toy model of Easther (1996)—
see also Martin and Schwarz (2001)), one cannot exactly solve the equations of
inflation (both unperturbed and perturbed), and one needs to resort to the slow-
roll approximation. The latter has been discussed in great detail for minimal (i.e.,
& = 0) coupling (see Lidsegt al,, 1997 for a recent review), and is much needed
also in the case of nonminimal, coupling, for which the equations are even more
complicated. Slow-roll generalized inflation is discussed in Section 4. The study
of scalar and tensor perturbations with nonminimal coupling is the subject of
Section 5, where previous results are reviewed and completed to obtain explicit
formulas for the observables of inflation. de Sitter solutions play the role of at-
tractors of inflationary solutions in the phase space for generalized, as well as
ordinary, inflation; it is this fact that ultimately gives meaning to the slow-roll
approximation. Section 6 contains a list of open problems and the conclusions.

2. NONMINIMAL COUPLING OF THE SCALAR FIELD

The action of gravity plus a nonminimally coupled scalar field as matter is

R 1
5= / d'x V=g [5 VGV V() - %R&] L@

wherex = 87 G, G is Newton’s constant and, apart from minor differences, we
adopt the notations and conventiérs Wald (1984).

5SMAP homepage: http://www.map.gsfc.nasa.gov/

6 PLANCK homepage: http://astro.estec.esa.nl/SA-general/Projects/Planck

”The metric signature is + ++ andG denotes Newton'’s constant. The speed of light and Planck’s
constant assume the value unity angl = G2 s the Planck mass. The components of the Ricci
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2.1. Why ¢ # 0?

The nonminimal coupling of the scal@rdescribed by Eq. (1.1) was appar-
ently introduced for the first time by Chernikov and Tagirov (1968), although it
is better known from the work of Callagt al. (1970). Why should one consider
& # 0? The answer is manyfold: a nonzeyas generated by quantum correc-
tions even if it is absent in the classical action (Birrell and Davies, 1980a,b; Ford,
1987; Ford and Toms, 1982; Nelson and Panangaden, 1982; Parker and Toms,
1985a). If one prepares a classical theory Witk 0, renormalization shifts it to
one with& # 0. Even though the shift is small, it can have a tremendous effect on
an inflationary scenario. The classical example of this effect is related to chaotic
inflation (Futamase and Maeda, 1989): the shift 0 — &enormaiized™ 107 (a
typical value predicted by renormalization, Allen, 1993; Ishikawa, 1983) is suffi-
cient to ruin the chaotic inflationary scenario with potentia&= A¢* (Futamase
et al, 1989; Futamase and Maeda, 1989).

Anotherreasontoincludeta# Oterminthe coupled Einstein—Klein—Gordon
equations is that it is required by renormalization of the theory (this was the moti-
vation for the introduction of NMC by Callagt al.(1970). It has also been argued
(see ahead) that a NMC term is expected at high curvatures (Ford, 1987; Ford
and Toms, 1982), and that classicalization of the universe in quantum cosmology
requirest # 0 (Okamura, 1998). A pragmatic point of view would be that, since
NMC may be crucial for the success or failure of inflation (Abbott, 1981; Faraoni,
1996, 1998; Futamas al., 1989; Futamase and Maeda, 1989), one better take it
into account and decideposterioriwhether its presence is negligible or not.

In relativity, it turns out that any value df different from /6 (“confor-
mal coupling,” the value that makes the Klein—Gordon equation (1.1), and the
physics ofp, conformally invariant itV = 0 orV = i¢*, Wald, 1984) spoils the
Einstein equivalence principle and is therefore not admissible (Faraoni and Sonego,
1994; Grib and Poberii, 1995; Grib and Rodrigues, 1995; Sonego and Faraoni,
1993).

Whichever point of view one adopts, with motivations arising in a range of
areas as wide as quantum field theory in curved spaces, wormholes (Coule, 1992;
Coule and Maeda, 1990; Halliwell and Laflamme, 1989), black holes (Hiscock,
1990; van der Bij and Radu, 2000), boson stars (Jetzer, 1992; van der Bij and
Gleiser, 1987), specific inflationary scenarios, a pure relativist's approach, or
merely a pragmatic one, the message is that in general it is wise not to ignore
the NMC term by setting = 0, as done in ordinary inflation. Although the inclu-
sion of NMC makes the analysis considerably more difficult, and it was unknown
in the early, pioneering days of inflationary theory, the times are mature for the
inclusion of NMC in the theory.

tensor are given in terms of the Christoffel symbﬁ§j by Ry =T, —T0u +fpTan —
rery andd = g2PVaVy,.

oo
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2.2. What is the Value of¢?

Itis plausible that the value of the coupling constabe fixed by the physics
of the problem, and not be left to the choice of the theoretician as a free parameter.
A patrticle physicist's answer to the question “what is the valué ®f differs
according to the theory of the scalar field employed.

If ¢ is a Goldstone boson in a theory with a spontaneously broken global sym-
metry, therté = 0 (Moloshin and Dolgov, 1982). If the scalar figids associated
to a composite particle, the value®fs fixed by the dynamics of its components.
In particular, in the larg®&l approximation to the Nambu—Jona—Lasinio model, the
value¢ = 1/6 was found (Hill and Salopek, 1992). In theMD¢symmetric model
with quartic self interaction, in which the constituents of thearticle are them-
selves bosong;, depends on the coupling constagtof the elementary scalars
(Reuter, 1994). In Einstein’s gravity with the potential

m?2 n A
V(¢) = Vo + 7‘1’2 + §¢3 + E¢4 (2.2)

and back-reaction, the valge= 0 was found (Hosotani, 1985; Parker and Toms,
1985b). Higgs fields in the standard model have valué¢smthe rangé < 0,& >
1/6 (Hosotani, 1985).

A great deal of results is available in the renormalization group approach
to quantum field theory in curved spaces. It is shown in Buchbinder (1986),
Buchbinderet al. (1986), Buchbinder and Odintsov (1983, 1985), Elizalde and
Odintsov (1994), Muta and Odintsov (1991), and Odintsov (1991) that in asymp-
totically free GUTs, depending on the gauge group employed (SU2)NHU(
SO(N),...) and on the matter conterg,is a running coupling that converges
to 1/6 (asymptotic conformal invariance), or to a valggedetermined by the
initial conditions (usually this occurs for supersymmetric GUTSs) or (formally),
|£(t)] — +o0. The last behaviour is often characteristic of large gauge groups
(SU(10), SO(10),. .). Herer isarenormalization group parameter, with> +oo
corresponding to strong curvature and early universe situations. In Buchbinder
et al. (1992) it was shown that also in asymptotically free GUTs with SU(5) as
the gauge groupé(t)| — +oo. Finite GUTs (another class of GUTSs) behave
similarly to asymptotically free GUTSs, with(z) converging to 16, or to an initial
valuegy (e.g., forN = 4 supersymmetry), or to infinity. Moreover, for finite GUTs
the convergence d@f(r) to its asymptotic value as— +oc is much faster than in
asymptotically free GUT models (indeed, the convergence is exponentially fast,
Buchbinder, 1989, 1992). Hence, the asymptotic valug iofthe early universe
strongly depends on the choice of the specific GUT and of its gauge group and
matter content.

The problem of the value df in this context is not an easy one, as is clear
from the example case of the simplg* theory. The latter is asymptotically free in



2264 Faraoni

the infrared limit ¢ — —o0), which does not correspond to high curvature. Never-
theless, it was shown in Buchbinder (1986), Buchbiretel. (1986), Buchbinder

and Odintsov (1983, 1985), Elizalde and Odintsov (1994), Muta and Odintsov
(1991), and Odintsov (1991) thatr) — 1/6 ast — —oo. Inthe limitt — +o0

of strong curvatures, one cannot answer the question of the asymptotic value of
&(t) since the theory is contradictory (not asymptotically free) in this limit. Nev-
ertheless, aexactrenormalization group approach to th¢* theory shows that

& =1/6is indeed a stable fixed point of the exact renormalization group (Parker
and Toms, 1985b).

Sofar, controversies onthese results only arose for arestricted class of specific
models (Bonanno, 1995; Bonanno and Zappdl997). The divergence of the
running coupling as the energy scale and the curvature and temperature increase
going back in time in the history of the universe, has been introduced in cosmology
(Hill and Salopek, 1992) and exploited to make the chaotic inflationary scenario
with & < 0 more plausible in the cases in whig#(r)| — +oo (Futamase and
Tanaka, 1999). The divergence of the coupling also crucial for the success
of the so-called “geometric reheating” of the universe after inflation (Bassett and
Liberati, 1998), in which particles are created due to the strong coupling of the
inflaton to the Ricci curvaturdR, instead of the usual coupling @f to other
fields.

First loop corrections to the classical theory mgkikely to be a running
parameter which depends on the Ricci curvature: in Ford and Toms (1982) and
Parker and Toms (1985b) the effective coupling

A 1
Seff = 5 + renz (S — 6) Ins, (23)

was found for the self-interaction potentiap*/4!, wheres is a parameter that
tends to zero in the renormalization group approach. In practice, this amounts to
have the effective coupling

Eeft  IN(RI?), (2.4)

wherel ~! is a renormalization mass (Ford, 1987).

To the best of our knowledge, no prescriptions for the valug ather than
those reviewed were proposed in the high energy physics literature. Instead, a
strong prescription comes from relativity.

In general relativity (and in all other metric theories of gravity in whicls
a nongravitational fieR), the only value of allowed by the Einstein equivalence
principle (Will, 1993) is the conformal coupling/@. However, the derivation of
this result (Faraoni and Sonego, 1994; Sonego and Faraoni, 1993) has nothing to

8For example, the Brans—Dicke scalar field is part of the gravitational sector of the theory together
with the metric tensogap, hence it is aravitationalscalar field.
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do with conformal invariance, conformal transformations, or conformal flatness
of the spacetime metrigyp. It arises in the study of wave propagation and tails of
scalar radiation (violations of the Huygens’ principle) in curved spaces. This field
of mathematical physics is rather far from cosmology amatjori, it is unlikely to
contribute to cosmology, but this is not the case. Before getting into details, let us
anticipate the main idea: one imposes that the structure of tajlévaiich satisfies
the wave equation (1.1)) becomes closer and closer to that occurring in Minkowski
space as the curved manifold is progressively approximated by its tangent space.
This is the Einstein equivalence principle (Will, 1993) applied to the physigs of
(of course, the rest of physics too has to satisfy the Einstein equivalence principle;
the requirement that does satisfy it is only a necessary condition for consistency
with general relativity).

Moreover, it turns out that = 1/6 is necessary in order to avoid the physical
pathology ofmassivdields¢ propagatinglong the light cones

We summarize now the derivation of this result: one begins with the physical
definition of Huygens’ principle due to Hadamard (1952). Assume that a point-like
source of (scalar) radiation emits a delta-like pulse at time0 inr = 0. If at
t = t; there is radiation only on the surface of the sphere with raditsct; and
centrer = 0, then we say that Huygens’ principle is satisfied (and that there are no
tails). If instead there is radiation also at radi ct; (tails), Huygens’ principle
is violated.

Mathematically, the solution for a delta-like pulse is the retarded Green func-
tion Gg(X’, x) of Eq. (1.1), which satisfies

[0°° (X)Va Viy — M? — £ R(X)]GR(X, X) = —8(X', X), (2:5)

wheres(x’, X) is the four-dimensional Dirac delta (DeWitt and Brehme, 1960)
which satisfies the boundary conditi@g(x’, x) = 0 if x" is in the past ofx

and, for simplicity, we consider the case in which the potentigh) reduces to

a mass term (the generalization to arbitrary potentials can be found in Faraoni
and Sonego (1994) and Sonego and Faraoni (19€3){x’, x) has the general
structure (DeWitt and Brehme, 1960; Friedlander, 1975; Hadamard, 1952)

Gr(X/, X) = Z(X, X)8r(I"(X/, X)) + W(X, X)Or(=T(X, X)), (2.6)

wherel' (X, X) is the square of the geodesic distance betweéamdx (a quantity

well known in quantum field theory in curved spaces, Birrell and Davies, 1980a);
one had™ = 0 if x" andx are light-like relatedl" > 0 if X’ andx are space-like
related, and” < 0 if X’ andx are time-like relatedsr is the Dirac delta with
support in the past of, and®g is the Heaviside step function with support in the
past light cone. The term i8r(I") describes a contribution to the Green function
from ¢ waves propagating along the light corié<£ 0), while the term®g(—T')
describes the contribution tGr from tails of ¢ propagatinginside the light
cone (" < 0). The functionsX(x’, x) and W(x’, x) are mere coefficients which
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(at least in principle) are determined once the spacetime metric is fixed (DeWitt
and Brehme, 1960; Friedlander, 1975).

The Einstein equivalence principle isimposed as follows on the physics of the
field ¢: when the spacetime manifold is progressively approximated by its tangent
space (i.e., by fixing the poimtand considering a small neighborhood of poixits
such thatx’ — x), then the solutiorGr(x’, x) for a delta-like pulse must reduce
to the corresponding one known from Minkowski spacetime, which is

. ' 1 2
G(RMmKOWSkI)(X/, X) — —(SR(—F) _ ﬂ@R(l—w) (27)
4 8
Calculations show that (Faraoni and Sonego, 1994; Sonego and Faraoni, 1993)
1
limy_.x Z(X', X) = —, (2.8)
4
. 1 9 1
My x WX, X)=—— M+ (& - =) RX)|; (2.9)
8 6

henceGg — GM™¥K) it and only if

(s - %) R(X) = 0, (2.10)

and this condition is verified, in general, only&if= 1/6. Note that, if¢ £ 1/6,
a physical pathology may occur: tlgefield can have an arbitrarily large mass
and still propagate along the light cone at the spacetime points where Eq. (2.10)
is satisfied; in this situation an arbitrarily massive field would have no tails. It is
even possible to construct an “ultrapathological” de Sitter spacetime in which the
value of the constant curvature and of the mass are adjusted in such a way that
a scalar field with arbitrarily large mass propagates along the light cone at every
point (Faraoni and Gunzig, 1998).

The result that = 1/6 in general relativity is extended to all metric theories
of gravity in which¢ is not part of the gravitational sector (Faraoni and Sonego,
1994; Sonego and Faraoni, 1993); in fact, in these theories, the Einstein equivalence
principle holds (Will, 1993); the fact th&t = 1/6 was confirmed in later studies
(Grib and Poberii, 1995; Grib and Rodrigues, 1995).

3. INFLATION AND ¢ # 0: THE UNPERTURBED UNIVERSE

In this section we summarize the consequences of the inclusion of NMC in the
equations of the unperturbed Friedmann—-Lemaitre—Robertson—-Walker (FLRW)
universe. We assume that the metric is given by

ds? = —dt? + a%(t)(dx? + dy? + d2) (3.1)

in comoving coordinateg (X, v, 2).
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Itis clear from the previous section that one cannot arbitrarily set0 and it
was shown in several papers (Abbott, 1981; Amendbkl., 1990; Faraoni, 1996,
1998; Futamase and Maeda, 1989) that the valuedstermines the viability of
inflationary scenarios. The analysis of some specific inflationary scenarios was
performed in Faraoni (1996) and is not repeated here: it suffices to mention that a
scenario should be examined with regard to

(i) theoretical consistence;
(ii) fine-tuning problems.

Regarding the former, one asks oneself whether any prescription for the value
of & is applicable. If the answer is affirmative, one examines the consequences for
the viability of the specific scenario (does the value afsed correspond to the
theoretical prescription?). Aspects studied include the existence of inflationary
solutions and a sufficient amount of inflation.

Fine-tuning is an aspect perhaps less fundamental but nevertheless important;
the classic example is the already mentioned chaotic inflationary scenario with
V = A¢* studied by Futamase and Maeda (1989); inflationary solutions turn out
to be fine-tuned fof > 1073, in particular for the valué = 1/6 ~ 0.16 predicted
by general relativity.

3.1. Necessary Conditions for Inflation

In this section we study necessary conditions for inflation, defined as ac-
celeration of the scale factom > 0. Acceleration of the universe, the essential
qualitative feature of inflation, is also required at the present epoch of the history
of the universe in order to explain the data from high redshift Type la supernovae
(Perimutteret al, 1998; Ries®t al,, 1998). The latter imply that a form of matter
with negative pressure (“quintessence”) is beginning to dominate the dynamics of
the universe. Scalar fields have been proposed as natural models of quintessence
(Baccigalupiet al,, 2000; Chiba, 1999; Perrottt al., 1999; Steinhardet al.,

1999; Uzan, 1999; Zlategt al, 1999), and therefore, the considerations of this
subsection are also relevant for scalar field models of quintessence.

In ordinary inflation driven by a scalar field the Einstein—Friedmann equations

.\ 2 22

H2 = (Z) -t (% +v<¢)) , (32)
a K -2
L= 36" -V), (3.3)

imply that a necessary (but not sufficient) condition for cosmic acceleration is

V > 0 (note that in slow-roll inflationp ~ V(¢) >>gi>2/2 and in this cas®& > 0
is necessary to satisfy the weak energy condition, Wald, 1984).
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What is the analog of the necessary condition for inflation whea 0?
Manipulation of the equations of inflation with NMC (Faraoni, 2000a) yields

3k dVv 1
\% 2¢d¢>0 (556). (3.4)
This necessary condition could not be generalized to valuwesl/6, due to the
difficulty of handling the dynamical equations analytically whgg: O (no ap-
proximation was made). Albeit limited, the semiinfinite range of values of the
coupling constang < 1/6 covers many of the prescriptions for the valuetof
given in the literature. In thé — 0 limit, Eq. (3.4) reduces to the well known
necessary condition for acceleratign> 0.

The necessary condition (3.4) immediately allows one to reach certain
conclusions.

(i) Consideran even potentidll(¢) = V(—¢) whichis increasingfop > 0
(e.g., a pure mass temP¢?/2, a quartic potential, or their combination
V(p) = m?¢p%/2+rp*+ A/k.For0< & < 1/6,onehag¢ dV/d¢ > 0
and it is harder to satisfy the necessary condition (3.4) for inflation than
in the minimal coupling case. Hence one can say that, for this class of
potentials, it is harder to achieve acceleration of the universe, and hence
inflation. Ifinstead < 0, the necessary condition for cosmic acceleration
is more easily satisfied than in t§e= 0 case, but one is not entitled to
say that with NMC it is easier to achieve inflation (because a necessary,
and not a sufficient condition for acceleration is considered).

(ii) Taking to the extremes the possibility of a balance between the potential
V(¢) and the terng Rp?%/2 in the action (2.1), one may wonder whether
it is possible to obtain inflation with a scalar field aWdy) = 0 (i.e.,
a free, massless scalar with no cosmological constant, only owing to
the NMC. In particular, the case of strong coupligg > 1 considered
many times in the literature (Bassett and Liberati, 1998; Chiba, 1999;
Fakir and Unruh, 1990b; Fukuyarehal.,, 1997; Hwang and Noh, 1998;
Morikawa, 1990, 1991; Salopeital., 1989) is of interest. Itis immediate
to conclude that this is not possible for< 1/6 since by settiny =0
the necessary condition (3.4) cannot be satisfied.

3.2. The Effective Equation of State
The effective equation of state
P=wp (3.5)

of the cosmic fluid describing the scalar field has a coefficietitat, in general, is
time-dependent; it cannot be assigregkriori without restricting the solutions to
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special onesy(t) = agt?CW+) jf w £ —1, ora = ap e"! if w = —1 (solutions
for a nonspatially flat universe and arbitrary valuesvodan be found in Faraoni
(1999). The functiorw(t) depends on the particular solution of the equations of
motion.

In the case of minimal coupling and forgeneralpotentialV, the effective
equation of state of the universe is given by

— == w(X), (3.6)

wherex z(j}Z/ZV is the ratio between the kinetic and the potential energy den-
sities of the scalag. Under the usual assumptidh > 0 (which guarantees that
the energy density is nonnegative wheg¢p = 0), one has that, fox > 0, the
functionw(x) = (x2 — 1)(x?> + 1)~ increases monotonically from its minimum
Wnin = —1 attained a = 0 to the horizontal asymptotel asx — +oco. The
slow rollover regime corresponds to the regigh<« 1 and tow near its minimum,
where the kinetic energy density ¢fis negligible in comparison to its potential
energy density. As the kinetic energy densify2 increases, the equation of state
progressively deviates frofd = —p and the pressure becomes less and less neg-
ative; the system gradually moves away from the slow rollover regime. At the
equipartition between the kinetic and the potential energy densities), one
has the “dust” equation of staf®@ = 0. The pressure becomes positivexas-
creases and, when the kinetic energy density completely dominates the potential
energy densityX > 1), one finally reaches the equation of stRte- p.

The limitation —1 < w(x) < 1 valid for £ = 0 does not hold fog # 0:
in the presence of NMC the ratiB/p is not bounded from below. An exam-
ple is given by the exact solution witR = —5p/3 obtained in Rocha Filho
et al. (2000) for& = 1/6 and corresponding to integrability of the equations of
motion.

4. GENERALIZED SLOW-ROLL INFLATION

The equations or ordinary inflation are solved in the slow-roll approximation;
similarly, the equations for the density and gravitational wave perturbations gen-
erated during inflation can only be solved, in general, in the same approxirhation.
Here, the basics of the slow-roll approximation to ordinary inflation are recalled,
referring the reader to the review paper (Lide¢l, 1997) and to the references
therein for a comprehensive discussion.

9The only exceptions are two specific scenarios: power-law inflation and the string-inspired scenario of
Easther (1996), a toy model already ruled out by the COBE observations (Easther, 1996). Otherwise
one may resort to numerical integration in a specified scenario.
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In the approximation

¢ < Ho, (4.1)
(1'52
V@)~ o> = (4.2)
the equations of ordinary inflation (3.2), (3.3), and
. . dVv
é +3Hp + G = 0, (4.3)
simplify to
H2 ~ §V(¢), (4.4)
. dVv
3H¢ + ag = 0. (4.5)

In this approximation, the equation of state of the cosmic fluid describing the scalar
field is close to the vacuum equation of st&e= —p, and the cosmic expansion
is almost a de Sitter one,

a = ap exp[H (t)t], (4.6)
with
H(t) = Ho+ Hit + - - -, (4.7)

whereHg is a constant and dominates the (small) teétgh and the next orders in
the expansion (4.7) dfi(t). The possibility that the kinetic energy dens}':t§//2

of the inflaton be negligible in comparison with the potential energy deN<ity

(as expressed by Eq. (4.2)) arise¥ifp) has a flat section over whigh can roll
slowly (i.e., with small “speed}). This is a necessary, but not sufficient, condition
for slow-roll inflation to occur: ifV (¢) is too steep, the inflaton will certainly roll
fast down the potential. Indeed, the slow-roll approximation is an assummtion
the solutionsof the full equations of inflation (3.2), (3.3), and (4.3). As a matter
of fact, the potential could have a flat section gncbuld still shoot across it with
large spee¢h. Moreover, it was noted (Liddle, 1999) that the reduced equations
of slow-roll inflation (4.4) and (4.5) have degree reduced by one in comparison
with the full equations of ordinary inflation (3.2), (3.3), and (4.3). Hence, the
solution is specified by the reduced set of two initial conditiap@o), a(to)) in-
stead of the full set of four conditiong(to), ¢ (to), a(to), a(to)), with an apparent
loss of generality of the solutions. Then, why does the slow-roll approximation
work? How is it possible that solutions of slow-roll inflation be general solutions?
(If they correspond to a set of zero measure in the set of all initial conditions,
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they are fine-tuned and clearly unphysical.) The answer is that the de Sitter
solutions

a=a exp(Hot), ¢=0 (4.8)

are attractor pointsfor the orbits of the solutions in the phase space (Liddle
etal, 1994; Salopek and Bond, 1990). Therefore, the quasi-exponential expansion
(4.6) is ageneralproperty. Were inflationary (de Sitter) attractors absent, slow-
roll inflation would be an empty theory without generic solutions, a formalism
describing a speculation that doesn’t occur in the real world.

How does the attractor mechanism transfer to the case of generalized inflation?
Does the attractor property of de Sitter solutions survive when NMC is included in
the picture? Is a flat section of the potential still a necessary condition for slow-roll
inflation? Regarding the last question, it is useful to keep in mind that (as has been
known for a long time, Abbott, 1981; Faraoni, 1996; Futamase and Maeda, 1989)
the NMC termg Rp2/2 in the action (2.1) acts as an effective mass té€rapoiling
the flatness of the potentials that are known to be inflationary fer0. These
considerations will be reexamined and made quantitative in the following.

One begins the analysis by writing the equations of generalized inflation as

B[1 — &(1 — 68)kd?|(H + 2H2) — k(66 — 1)p° — 4V + 6xEgV' =0, (4.9)
gq'>2+6sKH¢q'>—3H2(1—Ks¢2)+Kv —0, (4.10)

¢ +3Hp +ERp + V' =0. (4.11)

Egs. (4.9)—(4.11) are derived by varying the action (2.1); Eq. (4.9) corresponds
to the trace of the Einstein equationR = —«(p — 3P); Eq. (4.10) is the
Hamiltonian constraint B? = «p, while Eq. (4.11) is the well-known Klein—
Gordon equation (1.1).

Note that, in the presence of NMC, the energy—momentum tensor of the scalar
field, and consequently its energy densitand pressuré can be identified in
several possible inequivalent ways, corresponding to different ways of writing the
field equations (see Faraoni, 2000a for a detailed discussion). The procedure that
we adopt is identified as a convenient one in Faraoni (2000a) because it is general
(i.e., solutions are not lost by manipulation of the field equations) and the stress—
energy tensor of the scalar field is covariantly conserved, which may not happen
for other choices op and P (Faraoni, 2000a).

Explicitly, the energy density and pressureggofwhich we assume to be the
only source of gravity during inflation) relative to a comoving observer of the

10 Although the effect is like that of a mass, the interpretation of the constant curvature as a mass term
for the scalar field must not be taken literally (Faraoni and Cooperstock, 1998).
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FLRW universe are given by
¢’ :
p= 7+3§H2¢2+6§H¢¢+V(¢), (4.12)
q'sz . : ) :

P =% — V(@) —@He + 26° +2¢) — £(@H +3H?) ¢2.  (4.13)
As discussed in detail in Gunzag al. (2000, in press), only two equations of the set
(4.9)-(4.11) are independent, and the system can be reduced to a two-dimensional
phase space manifold with variabldd ,(¢). It is then straightforward to verify

that the solutions

(H,¢) = (H0!¢0)! (414)

with Hg and¢g constants, are all the fixed points of the dynamical system with
& # 0, provided that the conditions

126 Hé¢o + V5 =0, (4.15)
HE(1— k&dl) = K—;/O (4.16)

are satisfied, wher¥y = V(¢o) and V{ = dV/d¢|s. There are only two such
constraints since only two equations in the set (4.9)—(4.11) are independent. The
fixed points (4.14) are de Sitter solutions with constant scalar field and generalize
the solutions M, ¢) = (/A /3, 0) well known for minimal couplingA > 0
being the cosmological constant (corresponding to the constant potental
AJ/k).

In order to assess the stability of the universes (4.14) (i.e., to decide whether
they are attractors or not), one has to perform a stability analysis with respect to
perturbationg¢ andsH of the scalar field and the Hubble paraméter,

o(t, X) = go(t) + 3o (t, X), H(t, X) = Ho + §H (t, X). (4.17)

Since the general perturbations are space- and time-dependent, one is faced with the
recurrent problem of gauge-dependence in cosmology: if the perturbation analysis
is performed in a particular gauge (of which many appear in the literature), one
can never be sure that the growing (decaying) modes are genuine perturbations
and not pure gauge modes which can be removed by coordinate transformations
(Kolb and Turner, 1994; Linde, 1990).

To solve the problem, one needs to perform a gauge-independent analysis:
we adopt the covariant and gauge-invariant formalism of Bardeen (1980), in the
modified formulation of Elliset al. (1989, 1990), Ellis and Bruni (1989), Hwang

"n the analysis of the phase space, attention is usually restricted only to time-dependent perturbations
(e.g., Halliwell, 1987; Mulleret al., 1990); however, these perturbations are too special to draw
definite conclusions.
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and Vishniac (1990), and Mukhanet al. (1992). We first present and discuss
the results (Faraoni, 2000b), postponing their derivation to the final part of this
section. Foexpandingle Sitter spaces (4.14) withy > 0, there isstability (and
therefore (4.14) is an attractor point) if

” iol 1- 3‘§K¢g
VO = ¢O 1_ $K¢g (¢O 7é 0)! (418)

V§ +4kVo >0 (¢o = 0). (4.19)

By contrast, thecontractingfixed points (4.14) withHp < 0 are always unstable,
like in the case of minimal coupling.

Stability depends not only on the form of the scalar field potential, which
is expected, but also on the value&flt is only in particular situations that the
&-dependence disappears and stability holds irrespective of the valuerbfs
happens, for example

(i) if V(¢) has a minimumVy = 0 andVy' > 0) at¢o;
(ii) if V = A/k + r¢" (including the case of a simple mass temfy?/2)

with A, 2 > 0.
This space is stable for> 1 + f(x), where
1-3
x=wegh  f0=7 ; <1 (4.20)

The stability conditions (4.18) and (4.19) are deduced by assuming that@ 1;

if x > 1 a negative effective gravitational coupli@gs = G(1 — k£¢3) ! arises
(Faraoni, 2000a; Futamase and Maeda, 1989). Furthermore, the slow-roll param-
eter ez defined in the next subsection diverges if the unperturbed solgifn
crosses one of the critical values

1
VK§
(which are defined foé > 0), while the slow-roll parametes; diverges if¢(t)
crosses one of the other critical values

==+ (4.21)

1

=t e

(4.22)
(which exist for 0< & < 1/6).

Under the usual assumption thabe nonnegative, the Hamiltonian constraint
(4.10) forcese| to be smaller thag, (Amendolaetal,, 1990; Futamase and Maeda,
1989); we further assume thit| < ¢1. If instead|¢p| > ¢4, the direction of the
inequality (4.18) is reversed.

The casep = +¢; not considered so far corresponds to a class of solutions
with constant Ricci curvature containing a de Sitter representative (Gahaig
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2000; Gunziget al, in press). However, the latter is clearly fine-tuned and unstable
with respect to perturbationse.

For& = 0, Eq. (4.16) yields/; = 0 for the fixed point, whereas the stability
condition (4.18) gived/y’ > 0; this happens, for example, wh¥ifg) has a mini-
mum A/« in ¢, which intuitively corresponds to stability. A solution starting at
any value of is attracted toward the minimum;dfidentically coincides witlgo
and there is no kinetic energy & 0), Egs. (4.12) and (4.13) yield the energy den-
sity p = 36H2¢3 + Vo = —P and the vacuum equation of state (corresponding
to de Sitter solutions) holds.

IfinsteadV{ < 0andthe potential has a maximig= A/« in ¢o, a solution
starting neatpo will run away from it.

When¢ # 0 the interpretation of the stability conditions (4.18) and (4.19)
is complicated by the balance betwe¥i¢) and £ Rgp%/2 in the action (2.1).

Egs. (4.18) and (4.19) make precise the previous qualitative considerations on this
balance in Abbott (1981), Fakat al. (1992), Faraoni (1996), and Futamase and
Maeda (1989).

As a conclusionslow-roll inflation only makes sense foe£ 0 when the con-
ditions (4.18)or (4.19)are satisfiedIn this case, the expanding de Sitter spaces
(4.14) satisfying Egs. (4.15) and (4.16) are attractor points in the phase space. One
must be cautious and check that Eq. (4.18) or (4.19) are satisfied before applying
the slow-roll formalism presented in the next section. The importance of the in-
flationary attractors is made clear once again by the example afotfiacting
spaces (4.14), for which the slow-roll approximatioexact(in the sense that the
slow-roll parameters; defined in the next section vanish exactly). However, this
bears no relationship with the actual inflationary solutions because the contracting
spaces (4.14) are not attractors.

4.1. Derivation of the Stability Conditions

The derivation of Egs. (4.18) and (4.19) proceeds as follows: the metric
perturbations are identified by the quantiti&sB, H,, andH+ in the expression
of the spacetime metric

ds? = a?(t){—(1 + 2AY)dt?> — 2BY, dt dx
+[8ij (L4 2HL) 4+ 2H7 ;1 dX dx}, (4.23)

where theY are scalar harmonics satisfying

) L ER & )
VY=<W+8—)/2+E)Y=—kY, (4.24)
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Y; andY;; are related to the derivatives of theby

1
Yi= SaY, (4.25)
1 1

Yij = 50 Y + 285 Y, (4.26)

respectively (Bardeen, 1980), akds the eigenvalue defined by Eq. (4.24). We
shall use Bardeen'’s gauge-invariant potentials

On=H+ (B— EHT) (4.27)
a a - al. 1 .
CI>A=A+E(B—EHT)+E[B—E(aHT)], (4.28)

and the Ellis—Bruni-Hwang (Elli®t al, 1989, 1990; Ellis and Bruni, 1989)
variables

Ap(t %) = 89+ 2 (B— SH1),

(4.29)
N a - a
AR(t,x):SR—i—ER(B—EHT).

The evolution equations for the gauge-invariant variakbes, and A¢ were
derived in Hwang (1990a):

: Ekpe K
Cb”+< - s¢2_H>¢A_ 1—«eg?

F¢A¢%-F¢(%——H) ¢]A¢}=O, (4.30)

K\? 1 3.’;-'21((]52
(5> ¢H*’l—«f¢2< 1_«eg? © >K¢ o

2 2
1 {(3’3’“1’ >K¢A¢

1—kép? KEP?
k 3%k p?
< ) ¢ — ¢>( =74 > kAGY =0, (4.31)
— K&
Dpt by — K08P _ (4.32)

1— kg2
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. ) j . . \V;
Oy + HOY + (H - %) 2Dy — Dp) - #‘Wq)/x
+ [y {—§¢A¢ + [— —2%(p+ H¢)] Ag
é 2Hgp A 3
+ [sqs (KDH -0 7) - Z] KA¢>} —o, (4.33)

2

Ad +3HAD + <%+$R+V”) A¢ + ¢(30H — D)

+2(V' +ERp)PA +EPAR =0, (4.34)

where
-1 i V —2t¢ (¢ + 3H¢ ¢ 4.35
pH—m Ch —2%¢ o+ ¢+E . (4.35)

An overdot denotes differentiation with respect to the comoving time of the un-
perturbed background, and the subscript zero denotes unperturbed quantities. The
formulation of Hwang (1990a) has been adapted to the case of a FLRW universe
with flat spatial sections; the constant= 87 G has been restored. Only first order
calculations in the perturbations are presented here.

Considerable simplifications occur in Egs. (4.30)—(4.35) for the case of a de
Sitter space with constant scalar field (4.14) as the background universe; to first
order, one obtains

§x
Dy =Pp=— K;d)z A, (4.36)
) . [k 1 2) 42V
A +3HoAd + {k_z vy 4 ERolltrEdd) + 0K5¢Oj| b EGsAR = 0,
a 1— k&g

(4.37)
while Eqg. (4.33) reduces to the constraint

Voé ¢o

SR A N Vi 4.38
1— c£g? PHEdo (4.38)

which, using Eq. (4.35), is written as
Vo _ _M; (4.39)

Vo o 1—kéEd?
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Eq. (4.39) can also be obtained by division of Eq. (4.15) by Eq. (4.16). Using the
fact thatR = 6(H + 2H?) and Eq. (4.15) one obtains
2

i} : k
A¢ + 3HoAP + <v(;’ + 126 HZ +

§> Ap +EPAR=0.  (4.40)

For a de Sitter background (4.14) the gauge-invariant variakfeand AR coin-
cide, respectively, with the scalar field and curvature perturbadigrends R, to
first order,
Ap =38p, AR=3SR=6(H + 4HosH), (4.41)
and thereforg&
—6¢E o[ V' + 4(1+ 36)HE]
1-5(1— 66)cdh

One can then substitute Eq. (4.42) into Eq. (4.40)4gr and use Eq. (4.15) to
obtain

AR=46R=

Ag. (4.42)

i 2
Ad + 3HoAD + <% + a) A¢ =0, (4.43)
where
L Vgeo(1— kéd) — Vo(1— 3c5d)
do[1— £(1— 65)cepd]

anda = ag exp(Hot). Let us consider the expandingl{ > 0) de Sitter spaces
(4.14): atlate times — +oc one can neglectth&(a)? oc 2"t termin Eq. (4.43)
and look for solutions of the form

Ap(t, X) = ﬁ/d?’m@(t)eﬁ'i, Agy(t) = ¢ Pt (4.45)

Note that the Fourier expansion (4.45) is well defined because the universe has flat
spatial sections. The constaismust satisfy the algebraic equation

B2+ 3Hop +a =0, (4.46)

3H Ao
@201y 1= 4.47

While Re(ﬁl(’)) < 0, the sign ofRe(ﬂl(”) depends om: Re(ﬁl(“) >0ifa<O
andReB™) < 0 if & > 0. Hence one hastability for o > 0 which, forg % 0
translates into the advertised result (4.18). If instead 0, the gauge-invariant

(4.44)

with roots

12This expression agrees with the one following Eq. (38) of Hwang (1990a).
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perturbationsA¢ andAR o« A¢ (cf. Eq. (4.42)) grow without bound and there is
instability.
Let us discuss now thgy = 0 case; Egs. (4.30)—(4.34) yield

®y = da =0, (4.48)
. . k2
A + 3HoAd + <¥ + al) A =0, (4.49)

where AR =0 anda; = V' + 4« Vp; hence, forgg = 0, there isstability if
Eq. (4.19) is satisfied and instability otherwise.

Finally, consider theontracting(Hg < 0) fixed points (4.14); in this case it
is convenient to use conformal time(defined bydt = a di) and the auxiliary
variableu = aA¢. EqQ. (4.43) becomes

du _,
g TIKE-UmIu=o, (4.50)
where
o 1 2
Un)=[(4-—= )= +—, 451
o ( Hé) 72" Hor? (#.51)
and we used the relation
1

vaild in the background (4.14) (see Appendix B). Formally, Eq. (4.50) is a one-
dimensional Schudinger equation for a quantum particle of unit mass in the
potentialU (n); its asymptotic solutions at large (corresponding td — +o0

for a contracting de Sitter background) are free wavese™ ", andA¢ o« Hon
diverges. The solutions (4.14) withy < 0 areunstable as in thet = 0 case.

4.2. Slow-Roll Parameters

The Hubble slow-roll approximation known for ordinary inflation (Lidsey
et al, 1997 and references therein) is characterized by two slow-roll parameters
en = —H/HZ andny = —¢/(H¢) which stay small during slow-roll inflation.
Wheney andny increase, the kinetic energy of the inflation increases and, when
€y andny become of order unity, the slow-roll approximation breaks down and
inflation ends.

Slow-roll parameters have been identified also for generalized inflation
(Hwang, 1990a; Hwang and Noh, 1996; Kaiser, 1995a,b); the novelty is that there
are four such parameters as opposed to the two of ordinary inflation. From the
point of view of Section 3, this fact may provide a rationale of why it is harder to
achieve slow-roll inflation with nonminimal rather than minimal coupling, for a
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given potentiaV (¢) one has to satisfy four slow-roll necessary conditions instead
of two. The slow-roll parameters are the dimensionless quantities

H
€1 = m = —€H, (453)
€ = % = —MNH, (4.54)
Ekpd
S ko A— 4.55
“= "HL - (/9] (4.55)
o _ £1=B)g9 (4.56)

HI1 - (¢/¢2)2]
€3 and ¢4 vanish in the limité — 0 of ordinary inflation;e, also vanishes for
conformal coupling4 = 1/6). One hag;| « 1 for every solution attracted by the
expanding de Sitter spaces (4.14) (when the latter are attractor points) at sufficiently
large times. Moreoveg; = 0 exactly for de Sitter solutions.

5. INFLATION AND & # 0: PERTURBATIONS

The quantum fluctuations of the inflaton field which unavoidably take place
during inflation generate density (scalar) perturbations that act as seeds for the
formation of the structures observed in the universe today, from galaxies to super-
clusters (Kolb and Turner, 1994; Linde, 1990). Similarly, quantum fluctuadigyps
of the metric tensor are generated during inflation, corresponding to gravitational
waves (Kolb and Turner, 1994; Linde, 1990). Both scalar and tensor perturbations
leave an imprint on the cosmic microwave background by generating temperature
fluctuations. The latter have been detected by COBE (Srebat, 1992) and
other experiments, and are going to be studied with unprecedented accuracy by
the MAP: and PLANCK“ satellites to be launched in the very near future.

In order to confront itself with the present and future observations, the theory
must predict observables such as the amplitudes and spectra of perturbations. For
ordinary inflation, these have been computeth a remarkable series of papers,
Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) have performed a similar
calculation for generalized gravity theories described by the action

S=/H&vfﬁﬁfwﬁo—ﬂ@

2v%w¢—ww] (5.1)

133ee footnote 5.

145ee footnote 6.

15The calculation took a long time to be completed, starting with the early efforts of the early 80s (see
Lidseyet al. (1997) for a recent review and Guth (1997) for a historical perspective).
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The case of a nonminimally coupled scalar field is recovered by setting

f(¢,R) = R_ ERP?, w=1 (5.2)

K
Hwang’s treatment is covariant and gauge-invariant and builds upon the formalism
developed by Bardeen (1980), Elks al. (1989, 1990), Ellis and Bruni (1989),
and Hwang and Vishniac (1990), and considers a FLRW universe with arbitrary
curvature index. Motivated by inflation, we restrict ourselves to the spatially flat
case. The idea of Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) is to
reduce the field equations of the theory to formal Einstein equations

Gab = kTEM, (5.3)

al

whereTafﬁﬁ) is an effective stress—energy tensor incorporating terms that would

normally appear in the left hand side of the field equations. The treatment proceeds
by using the gauge-invariant study of perturbations in Einstein gravity and ordinary
inflation (Lidseyet al,, 1997; Mukhanowet al,, 1992).

In the following, we review and complete the calculation, adapting it to the
case of the action (2.1) and (5.2); we believe that this review is useful for future
reference, since a consistent discussion of the slow-roll approximation was not
given before for generalized inflation. Instead of using Eq. (4.23), it is convenient
to rewrite the metric perturbations in a different form.

5.1. Scalar Perturbations
The metric is written as
ds? = —(1+ 2a) dt® — yx; dtdX 4 a2(t)si; (1 + 2¢) dx' dx/, (5.4)

while the scalar field is given by Eq. (4.17). One introduces the additional gauge-
invariant variable
¢ ¢
8¢, =8¢ — ﬁ(p = _ﬁ%"" (5.5)

The second order action for the perturbations (analogous to the one for ordinary
inflation, Lidseyet al., 1997) is Hwang (1997b, 1998a)

Sert = /dtd%?ﬁpen: %/dtd%? aSZ{aq'sj — %5¢ga¢w,i
T H[ oo (o T .00
rarg () ] oo

H2[L — kE(1 - 68)8)(L — k€0?)
[H(1— x&¢?) — £xpd)?

where

Z(t) = (5.7)
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(cf. Eq. (6) of Hwang (1997b, 1998a) and use Eq. (5.2)). The action (5.6) yields
the evolution equation for the perturbaticiys,

0822 () o e

By using the auxiliary variablé%

z(t) = 1—‘1’\/2 (5.9)
u(t, X) = 2%5% = aVv'Zsg,, (5.10)

Eq. (5.8) is reduced to
Uy — (v2 + Z—;”) v=0, (5.11)

wheren denotes conformal time.

Quantization is achieved by assuming that the background is classical while
the perturbations have quantum nature. A Heisenberg picture is used in which
guantum operators change in time while the state vectors remain constant (the
vacuum state of the system is identified with the adiabatic vacuum (Birrell and
Davies, 1980a), and one wants the vacuum state to remain unchanged in time).
The fluctuations¢(t, X) of the scalar field are associated to a quantum operator
8é(t, X); similarly ¢ — @, and the gauge-invariant variable (5.5) is associated to
the quantum operator

¢ .
¢ =8¢ — 4 (5.12)
(the hats denote quantum operators). The unperturbed quantities are regarded as
classical.

Since the three-dimensional space is flat, it is meaningful to perform a Fourier

decomposition of the operatMA)w,

8¢, = @ )3/2 / A3k [ad,k(t) €5 + afsgrn (1) e ], (5.13)

where the annihilation and creation operaﬁyandéﬁ satisfy the canonical com-
mutation relations

[a, &] = [4],4)] =0, (5.14)
[a, &)1 = 8@k — K), (5.15)

16The variablez of Eq. (5.9) agrees with thevariable of Mukhanoet al. (1992) and with thez of
Lidseyet al.(1997) multiplied by the factoy/Z (note thatZ = 1 corresponds to ordinary inflation).
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and the mode function&p,k(t) are complex Fourier coefficients satisfying the
classical equations obtained from Eg. (5.2)

3 2 s
8Py + (a Z) 5¢¢k {k— LA [a z <£) :|}5¢¢k =0. (5.16)

a2 a3Z ¢ H
Similarly,
u(t, X) = (2 )3/2 / 3K [ui(t) €5% + v (t) ek, (5.17)
— ?3% = av'Zsd,, (5.18)

and thev(t) satisfy the equation

z
(V) + <k2 - %) v = 0. (5.19)
The momentum conjugated &g, is

aL"pert
3(¢,)

and the associated quantum operateris.
8¢¢, andsn, satisfy the equal time commutation relations

[86,(t, %), 86, (t, X)] = [87,(t, X), §7,(t, X)] =0, (5.21)

Smy(t, X) = =a3Z8¢,(t, X), (5.20)

[8¢,(t, X), 87,(t, X)] = a;—za<3>(>*< —x)). (5.22)

8¢,k (t) satisfy the Wronskian condition

- . o i
8¢Wk8¢wk - 8¢(pk8¢lpk = E

In Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996 xsssimedhat
Z,, N
— = —, 5.24
2= (5.24)

wheren is a constant; we will comment later on the validity of this assumption.
Under the assumption (5.24), Eq. (5.19) for the Fourier megdesduces to

2
(v ;21/4)} o=0.

(5.23)

(k) + [kz - (5.25)

where

v = (n + }>1/2. (5.26)
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By making the substitutions

s=Kkny,  wv=4+/5J9), (5.27)
Eqg. (5.25) is reduced to the Bessel equation
d?J  1dJ p?
- _— 1 [ = U:; 2
dsz+sds+< Sz)‘] 0; (5.28)
therefore the solutionsy(n) can be expressed as
ve(n) = vknd, (kn), (5.29)

whereJ,(s) are Bessel functions of order Eq. (5.10) yields the solutions for the
Fourier coefficient$ ¢,

() = Zpguln) = =) (530)

Thew(n) which solve the Bessel equation (5.25) are expressed in terms of Hankel
functionsH*2), leading to (see Appendix A)

veaul

w(n) = 5 [e®HDKIn)) + c2(HP (K] (5.31)
and, by using Eq. (5.30), to
Sl o -
8 = Y= Tk HOKInl) + co(k)HP (k)] 5.32
Pok(n) 2aﬁ[ 1K) HP (KInl) + co(K)H 2 (K1) (5.32)
The normalization is chosen in such a way that the relation
lc2(K)? — e (K)? = 1 (5.33)

holds, in orderto preserve the equal time commutation relation (5.23). Furthermore,
the coefficients are completely fixed by requiring that, in the limit of small scales,
the vacuum corresponds to positive frequency solutions; in fact the field theory
in Minkowski space must be recovered in this liffitThe small scale (large
wavenumber) limit corresponds to

i (5.34)
and Eqg. (5.19) reduces to
(Uk),m - kzvk =0 (5.35)

17In other words, one is applying again the Einstein equivalence principle (Will, 1993), this time to
the physics of quantum fluctuations of the figld
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in this limit, with solutionsuy, o« €7, Eq. (5.30) yields

Sk ci(K) €417 + cp(k) ek (5.36)

1
= aVZ IR
which can also be obtained by expansion of the solutions (5.32§|fors> 1.
Obviously, the positive frequency solution at small scales is obtained by setting

a() =0, cK=1 (5.37)

so that

5¢(n, X) = f A% [co(K)e ®F ) 1 cy(kye kXK (5.38)

1
(27)3/2

Thepower spectrunof a quantity f (t, X) is defined as

3 o 3
Pk, t) = %/d% (FX 4T, 1) F (X, t))x ek = %lfk(t)ﬁ (5.39)

where ( )z denotes an average over the spatial coordinataad fi(t) are the
coefficients of the Fourier expansion

f(t,X) = /d3k[f () &5% 4 (1) e KA. (5.40)

o

The power spectrum of the gauge-invariant oper&]ﬁg,ris

k3 A ry
Pu, ) = 5 f B3 (018 1 (X + T, )56 4 (X, )00z €757, (5.41)

where(0| A|0) denotes the expectation value of the operéton the vacuum state.

One is interested in computing the power spectrum for large-scale perturbations,
that is, perturbations that cross outside the horizon during inflation, subsequently
remain “frozen” while outside the horizon, and only after the end of inflation,
during the radiation- or the matter-dominated era reenter the horizon to seed the
formation of structures. In the large scale limit the solution of Eqg. (5.2) is

86, (t, X) = ——[C(x) D(X) / dt’ 312 ';} (5.42)

whereC(X) and D(X) are, respectively, the coefficients of a growing component
and of a decaying component that we neglect in the following. Accordingly, the
solutiondgyk(n) in the large scale limik|n| <« 1is

i k
Sgeln) = 'j@r_(”)( '”') [ca(n) — ()] (5.43)
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for v £ 0, wherel' denotes the gamma function. The power spectrum (5.41)
therefore is given by

P2k, ) = — ) (Kinl e IC2(K) — ¢y (K)| (5.44)
8¢, )= n32apvZ \ 2 2 ! '
forv # 0, while one obtains (Hwang, 1990b, 1996, 1997a; Hwang and Noh, 1996)
2Tl (kK \*2 o
Yok, = 2 (— In(k k) — cy(k 4
Pk =22 (57 ) Ininblea®) — culk) (5.45)

for v = 0. Now, Eq. (5.42) yields (neglecting the decaying component),
H
C(X) = —z&p(p(t, X) (5.46)
and therefore, using Eq. (5.39),

PE = |5

Pip (K, 1). (5.47)
By combining Egs. (4.56) and (5.46) one obtains
H

The relation between temperature fluctuations of the cosmic microwave back-
ground and the variablg(X) is given in Hwang (1996) as

5T C
— == 5.49
T 5 ( )
and therefore the spectrum of temperature fluctuations is
1
Pitakt) = 2Pk D) (5.50)
and Eq. (5.47) yields
1|H
Prrrr(k, 1) = : ‘3‘ Pip(k, 1) (5.51)
with 7?51(]{5 given by Egs. (5.44) and (5.45).
Thespectral indeyof scalar perturbations is defined as
. din ,Pag;m
Ng = 1+ W, (552)
and Eqg. (5.50) immediately yields
dl
ne =14 nPe (5.53)

dink
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By using Egs. (5.47) and (5.44) one obtains
Nne=4-—2v (v #0); (5.54)

in the following we do not need the expression foe= 0. To proceed we need
extra input, which is connected to the validity of the assumption (5.24), which we
now discuss. Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) proved that
Eq. (5.24) is satisfied for pole-like inflati@ft) o (t — tg)~%(gq > 0), an expansion

law appearing in pre-big bang cosmology related to low-energy string theory.
However, it turns out (a point not discussed in these works) Hupt(5.24) is
satisfied in slow-roll inflation, to first ordeiThis is interesting for us because we
know, from Section 4, that for suitable values&there is a de Sitter attractor
(4.14) for nonminimal coupling, and therefore that it makes sense to consider the
slow-roll approximation.

Most models of ordinary inflation are set and solved in the context of the
slow-roll approximation. In generalized inflation as well, the fact that slow-roll
conditions satisfy Eq. (5.24) allows one to solve Eq. (5.19) for the perturbations.

Let us have a deeper look at Eq. (5.24) and at the valuefof the slow-
roll approximation. The quantity,,/z in Eqg. (5.19) was computed exactly in
Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996) in terms of the slow-
roll coefficients (4.53)—(4.56). Upon assuming that ¢hbe small and that their
derivatives; can be neglected & 1, .. ., 4), a situation mimicking the usual one
(Lidseyet al,, 1997), one obtains to lowest order

Z
T — a?H(2 — 261 + 3¢, — 33 + 3cy). (5.55)

The standard relation
1 1

~— , 5.56
1= TaH1t e (5.56)
yields Eg. (5.24) with
N=2+3(—2¢;+ €2 — €3+ €4) (5.57)
and
3
V= 5~ 2¢1 + € — €3+ €4. (5.58)

Egs. (5.54) and (5.58) yield the spectral index of scalar perturbations for general-
ized slow-roll inflation,

Ng = 1+2(2€1 —€2+€3—€4), (559)

8Hwang (1998a,b) is devoted, respectively, to the calculation of scalar and tensor perturbations in
pre-big bang cosmology.
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where the right hand side is computed at the time when the perturbations cross
outside the horizon during inflation. The deviationsgfrom unity (i.e., from an
exactly scale-invariant Harrison—Zeldovich spectrum) are small during generalized
slow-rolling. Foré = 0 one recovers the well-known formula for the spectral index

of ordinary inflation (Lidseyet al,, 1997)ns = 1 — 4ey + 2n4.

5.2. Gravitational Wave Perturbations

Tensor perturbations are generated as quantum fluctuations of the metric ten-
S0rgsp in nonminimally coupled inflation, and were calculated in Hwang (1998a)
with a procedure similar to the one used for scalar perturbations. We briefly review
also this calculation.

It is convenient to introduce tensor perturbations as the trace-free and trans-
verse quantities;j in the metric

ds? = —dt? 4 a%(t)(8; + 2c;;) dx' dx, (5.60)
with
d=0 gjl=0 (5.61)
The power spectrum is
k3 o
Pcvj k,t)= — f d3r (Cij ()_{ +T, t)Cij ()_{, t))x g ikT (5.62)
' 22
and the spectral index of tensor perturbations is
dinPg,
nr = dink . (563)
One obtains
'Pl/z(k _ 8rGH 1 r'(v) (M)?’/ng
o T T o T keg? T@E/2) \ 2
1 5 .
x \/E Z 6 (K) — ci2(K)12, (5.64)

where the summatiol, is intended over the two polarization statesnd+ of

gravitational waves. In the slow-roll approximation one has
Zp _ M

—. 5.65
= (5.65)

wherem is the linear combination of the slow-roll parameters

m=2-— 3(61 — 63) (566)



2288 Faraoni

andvg = (M + 1/4)Y/2, as usual. Hencey >~ 3/2 — €1 + €3 and, to first order,
nr = 2(61 - 63). (567)

Eq. (5.67) reduces to the well known spectral index of tensor perturbations (Lidsey
etal, 1997) of ordinary inflation whes — 0. Note thany is very small for slow-
roll inflation, like in slow-roll ordinary inflation.

This completes the review of the calculation of spectral indices in Hwang
(1990b, 1996, 1997a) and Hwang and Noh (1996); the reader is invited to consult
the relevant paperf8. We just reported on the published work and completed
the calculation corresponding to the slow-roll regime. Slow-roll inflation is not
explicitly mentioned in Hwang (1990b, 1996, 1997a) and Hwang and Noh (1996),
probably because the attractor role of de Sitter solutions was not established at that
time. The knowledge that slow-roll inflation does indeed make sensg 0
allows us to claim that Hwang's (Hwang, 1990b, 1996, 1997a; Hwang and Noh,
1996) calculation applies to it, and to use Eqs. (5.59) and (5.67) for the spectral
indices to test generalized inflation with observations of the cosmic microwave
background.

6. OPEN PROBLEMS

The program of rethinking inflationary theory by including the (generally
unavoidable) NMC of the scalar field, a crucial ingredient too often forgotten, is
not exhausted by the results presented in the previous sections. In this section, we
outline open problems that constitute avenues for future research.

It may be useful to remark that, in addition to inflation, NMC changes the
description and the results of the dynamical systems approach to cosmology (e.g.,
Gunziget al,, 2000, in press), quantum cosmology (Barvinsky, 1999; Barvinsky
et al, 1977; da Silva and Williams, 2000; Fakir, 1990; Kamenshetial., 1995;
Okamura, 1998), classical and quantum wormholes (Coule, 1992; Coule and
Maeda, 1990; Halliwell and Laflamme, 1989), and constitutes a line of approach
to the cosmological constant problem (Dolgov, 1983; Ford, 1987; Suen and Will,
1988).

6.1. Doppler Peaks

We did not present Doppler peaks for generalized inflation: the acoustic os-
cillations well known for minimal coupling (Liddle and Lyth, 1993) are indeed
modified by NMC. Although a plot of the Doppler peaks requires the specification

19A synthesis is given in Kaiser (1995b) using different variables.
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of a particular scenario of generalized inflation (the potenti@t), the value of

the coupling constargt, details about the end of inflation and reheating, etc.), pre-
liminary work was done in Baccigalupt al. (2000) and Perrottet al.(1999). The
acoustic peaks and the spectrum turnover are displaced, and the effects of NMC
in this model are (Baccigalugt al., 2000; Perrottat al., 1999)

(i) anenhancementofthe large scale, low multipbtegjion of the Doppler
peaks, due to an enhancement of the integrated Sachs—Wolfe (or Rees—
Sciama) effect;

(ii) the oscillating region of the Doppler peaks is attenuated;
(iii) the location of the peaks is shifted toward higher multipoles.

These features were derived by direct integration of the equations for the
perturbations with a modified CMBFAST code, under the assumption that the
scalar field is the source of quintessence and that it has a potential of the form
V(¢) x 1/¢%(a > 0)inthe range of values spanneddtoday. Similar qualitative
effects appear in a model based on induced gravity, and are interpreted as the
signature of a broad class of scalar—tensor gravity theories in the cosmic microwave
background (Baccigalugit al, 2000; Perrottat al., 1999).

However, the nonminimally coupled scalar field driving inflation does not
necessarily have to be identified with the same scalar which possibly constitutes
guintessence today (as is instead done in quintessential inflation). Such an identi-
fication, indeed, may appear artificial. If the quintessence and the inflation field do
not coincide, the rather strong constraint (Baccigaktml., 2000; Chiba, 1999;
Perrottaet al.,, 1999)§ZG¢§,day< 1/500 coming from tests of gravity in the Solar
System (Will, 1993) is circumvented. More important, the features of the Doppler
peaks could then be different. A separate study is needed to explore their features
in detail.

6.2. Cosmic No-Hair Theorems

Cosmic no-hair theorems (Kolb and Turner, 1994) in the presence of NMC are
not known: one would like to know whether inflation is still a generic phenomenon
when & # 0. In other words, starting with an anisotropic Bianchi model, does
inflation occur and lead the universe toward a highly spatially homogeneous and
isotropic FLRW state, with flat spatial sections?

Preliminary results (Futamaséal,, 1989; Starobinsky, 1980a) show that the
convergence to the = 0 FLRW universe can disappear by going frgma= 0 to
& # 0. Our perturbation analysis of Section 4 shows that, when the deviations from
homogeneity and isotropy are small, the de Sitter solutions are still inflationary
attractors in the phase space, but an analysis for large deviations from a FLRW
space is needed.
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6.3. Reconstruction of the Inflationary Potential

The reconstruction of the inflationary potential from cosmological observa-
tions is a task that was undertaken only o= 0. Given the unavoidability of
NMC in the general case, one would like to have a similar formalism also for
& # 0. Nothing has been done yet on the subject.

6.4. A Connection Between Inflation and Boson Stars?

Finally, we would like to point out a possible connection between generalized
inflation and relativistic astrophysics. It appears from observations of gravitational
microlensing that there is a population of objects with mdss M, responsible
for the observed microlensing events. Boson stars (see Jetzer, 1992 for a review)
are candidates; nowadays, they are not regarded as unrealistic objects.

If boson stars exist at all, they are relics from the early universe since they
are formed by bosons that were around at primordial times and aggregated to form
balls very early. Hence, there is the possibility that boson stars are formed of a
condensate of inflation particles. Since the stability of boson stars depends on the
value of& (van der Bij and Gleiser, 1987), and such objects can only exists in
a certain range of values gf(Jetzer, 1992; van der Bij and Gleiser, 1987), one
can connect this range of stability to successful generalized inflation scenarios (of
which only a few have been studied in the literature). This connection could be a
link between present-day objects and the early universe; work is in progress in this
direction. For example, gravitational lensing by boson stars was studiéd=dd
and shown to have characteristic signatures (Dabrowski and Schunck, in press);
this study could be generalized to thez 0 case.

To conclude, the inclusion of NMC in the equations of inflation seems to
be necessary in most inflationary theories, and leads to important consequences.
Inflationary solutions are changed into noninflationary ones, and fine-tuning prob-
lems appear. The much needed slow-roll approximation to inflation is meaningful
only when particular relations between the scalar field potential, its derivatives,
and the value of are satisfied. In generalized slow-roll inflation, the spectra of
density and gravitational wave perturbations have been computed, and are given
in Section 5. In our opinion, the most interesting problems left open in generalized
inflation are whether cosmic no-hair theorems hold, and the reconstruction of the
inflationary potential, which will be the subjects of future research.

APPENDIX A
The Bessel functiod, (s) can be expressed as

HOS) + HP(S)

J(s) = 5 , (A1)
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and therefore

uc(n) = VknJy(kn) = g[ H®(kn) + HE(kn)]. (A2)
In addition, the property
R (—1) Z\ P2k
%A= ki (2) (A3)
yields
Ip(=2) = (1P Jp(2). (A.4)

Then,J, (kn) = (=1)" u(k|n[) if » < 0.

APPENDIX B

In de Sitter space, the dependence of the scale factor on the comovirtg time

a = ag exp(Hot) (B.1)

and the definition of conformal time

t dt/
= -, B.2
=/ a(t) &2
yield the relation
1 e—Hot

- = __ . B.3
n at 20Hs (B.3)

For expandingde Sitter spacedH, > 0),t — +oo corresponds tg — 0, while
for contracting(Ho < 0) de Sitter spaces,— +oo corresponds tag — +oo.
During slow-roll inflation, Eq. (B.3) is corrected to

1 1

T TaH1t e

which holds in the approximation that the derivatives of the slow-roll parameters
€ can be neglected (Hwang, 1997b, 1998a).

(B.4)
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